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SUMMARY 

This  introductory  art icle  provides  the  background  for  the  succeeding 
ar t ic les   compris ing a study  of  convection  in  the  tanks  of a rotat ing  space-  
c r a f t .  The discussion relates the  analysis  of  mixing  of a s t r a t i f i e d   f l u i d   i n  
a supercr i t ica l   c ryogenic  state (e.g.  , oxygen, i n  which  mixing  fans may not be  
used) to   spacec ra f t   such  as Apollo  and  orbit ing  space  stations.  

INTRODUCTION 

This report   descr ibes  a general  study  of  convection  and  mixing  of a strat- 
i f i e d   f l u i d   i n  a ro t a t ing   con ta ine r  and i ts  app l i ca t ion   t o   t he   spec ia l   p rob lem 
of f l u i d   h e a t i n g  and  convection i n  a spacecraf t   t ank .   In  a ro t a t ing   con ta ine r ,  
spat ia l   var ia t ions  of   temperature   and  densi ty   lead  to   "natural   convect ion" 
under   the   ac t ion   of   the   e f fec t ive  body forces  induced by t h e   r o t a t i o n .  Simul- 
taneously,   t ime-dependent  rotation  of  the  container may induce  "forced  convec- 
t i on"   coup led   w i th   t he   e f f ec t s   o f   s t r a t i f i ca t ion   ( s ee  ch. 2 ) .  

The s tudy   repor ted   here   began   wi th   the   need   to   ana lyze   the   owgen  s torage  
system  used i n  an Apollo  spacecraf t ,  as out l ined   in   the   next   sec t ion .   There-  
fore ,   a l though  the   s tudy   appl ies   to   spacecraf t   f lu id   s torage   sys tems  in  gen- 
e ra l   ( inc luding ,   e .g . ,   o rb i t ing   space   s ta t ions) ,   the   fo l lowing   condi t ions  are 
imposed (a t  c e r t a i n   s t a g e s   i n   t h e   s t u d y )   i n   t h e   s p e c i f i c   a p p l i c a t i o n   t o  an 
Apollo oxygen tank:   the   f lu id   cons idered  is  oxygen i n  a s u p e r c r i t i c a l  cryo- 
genic s ta te ,  n e a r   t h e   c r i t i c a l   p o i n t  (where t h e   f l u i d  i s  not   dis t inguishable  
as   be ing   e i ther  a gas or a l iqu id ) ;   t he   sys t em i s  free o f   g rav i t a t iona l  
forces;   and  the  container  i s  ro ta t ing   about  a noncent ra l   ax is .  

In  a n e a r - c r i t i c a l  thermodynamic s t a t e ,  a f lu id   such  as oxygen may 
undergo a phenomenon known as "pressure  co11apseY1'  which is  a l o c a l   r a p i d  
decrease  in  pressure  result ing  from  the  sudden  mixing  of a thermally strati- 
f i e d   f l u i d .  The po ten t i a l   p re s su re   d rop   ( a l so   ca l l ed   "po ten t i a l   p re s su re  
decay"  and "poten t ia l   for   p ressure   co l lapse")  i s  defined as t h e   a i f f e r e n c e  
between the   p re s su re   i n  a thermally  s t ra t i f ied  environment   and  the  pressure 
t h a t  would be present  i f  t h e  s t ra t i f ied f l u i d  were  suddenly mixed ad iaba t i -  
c a l l y   i n t o  a uniform state. Thus, because   o f   the   na ture   o f   the  state rela- 
t i o n s   i n   t h e   n e a r - c r i t i c a l   r e g i o n  (where t h e  state i s  h i g h l y   s e n s i t i v e   t o  
changes in  temperature),  sudden  mixing  of a s i g n i f i c a n t l y   s t r a t i f i e d   s u p e r -  
c r i t i c a l   f l u i d   r e s u l t s   i n  a subs tan t ia l   p ressure   d rop .  From  many state 
poin ts  , such an occurrence  would  dr ive  the  f luid  into  the  undesirable  two- 
phase state,  where  vapor  and l i q u i d  can  coexist .  The sudden  decrease i n   p r e s -  
sure  may render   inoperat ive  the  systems  (such as f u e l   c e l l s   a n a  l i f e  support)  
in tended   to   be   suppl ied  by the  oqgen-storage  system. This phenomenon of 
pressure  col lapse can be p reven ted   by   l imi t ing   t he   s t r a t i f i ca t ion ,  which is  
done by   keeping   the   f lu id   suf f ic ien t ly  mixed.  (Slow  mixing limits the 
poss ib i l i t y   o f  sudden  mixing.) 
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From t h e  above desc r ip t ion ,  one can  surmise  that  results of   calculat ions 
of  flow  of a n e a r - c r i t i c a l   f l u i d  may be  highly  dependent on accurate  
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representa t ion   of   the  thermodynamic proper t ies   (c f .   ch .  4 and 6 ) .  Near- 
c r i t i c a l   f l u i d s   a l s o  have  low v i scos i ty   coe f f i c i en t s  and  high  thermal  expan- 
s ion   coef f ic ien ts  (ref.  1 , p.  660 f f )  so the re  w i l l  be  strong  coupling  between 
the  natural   convect ion and the  forced  convection due t o  time-dependent 
ro t a t ion   ( c f .   ch .  2 ) .  

The goals   of   the   s tudy  reported  here  are t o   s i m u l a t e  - by  numerical  anal- 
y s i s  and  computation - the   f lu id   mot ion ,   the   energy   t ransfer ,  and the  mixing 
of a f lu id   under   the  above condi t ions,  and t o  determine i n   p a r t i c u l a r   t h e  
e f fec t iveness   o f   the   mix ing   resu l t ing  from r o t a t i o n  maneuvers i n  reducing  the 
potent ia l   pressure  drop i n  the  cryogenic  owgen-storage  system  used  in  space- 
c raf t   such  as the  Apollo.  

BACKGROUND FROM APOLLO 

In  spacecraf t   such as Apollo,   supercr i t ical   cryogenic   s torage  of   owgen 
and  hydrogen i s  highly  desirable   because a l a r g e  mass o f   t h e   f l u i d  can  be 
s to red  a t  very  high  densi ty ,   and  therefore   in  a small volume, at pressures  low 
enough for  reasonably  l ightweight  tanks.  

The Apollo oxygen tanks   a re   loca ted   in   the   se rv ice  module as shown i n  
f igure  1.1 for  Apollo 13. The tanks  are  spheres  with  inside  diameters  of 25 
i n .  and  with  distances  from  the  spacecraft  axis t o   t h e   s p h e r e   c e n t e r s  of 3 f t  
( tank 1) and  about 5 f t  ( tank 2 ) .  With the  assumption  that   the   center   of  mass 
of   the   vehic le  i s  on t h e   c e n t r a l  axis , these  dis tances   are   then  the  "rotat ion 
arms" of  the  spheres when the   veh ic l e   ro t a t e s  i n  space. Each tank i s  loaded 
i n i t i a l l y   w i t h  330 l b   o f   l i q u i d  oxygen. The oxygen i s  then  heated  by an 
i n t e r n a l   e l e c t r i c a l   h e a t e r   ( s e e   f i g .  1 . 2 )  t o  completely  vaporize  the  oxygen. 
Subsequently,   the  heater i s  opera ted   per iodica l ly   to   main ta in  a system  design 
pressure  of 900 '35 psia.  "he  maintenance  of  system  pressure  by  the  heater 
operation i s  required  because  pressure i s  changed  both  by  "heat  leak"  (heat 
conduction  into  the  tank) a t  the   imperfec t ly   insu la ted  wall and  by  withdrawal 
of f l u i d  from the  tank.   Pressure  sensors   switch on t h e   h e a t e r  when the   p res -  
sure  drops to   t he   des i r ed   l ower  limit and  switch  off   the   heater  at the  upper  
pressure limit. These  "heater  cycles"  and  corresponding  ''pressure  cycles"  are 
discussed  in   chapter  6. 

I f   t h e r e  were no convect ion  of   the  f luid ( i n  zero  gravi ty)   during  heater  
operation,  strong  temperature and densi ty   gradients  would develop  because  of 
the  ineff ic iency  of   pure   heat   conduct ion  for   energy  t ransfer .  Each hea te r  
cyc le   resu l t s   in   increas ingly   severe   g rad ien ts ;   therefore ,  a s i g n i f i c a n t  
po ten t ia l   p ressure   d rop  would  develop so  t h a t  a small subsequent  acceleration 
could  result   in  pressure  collapse.   Adequate  slow  mixing  of  the  f luid  there- 
fo re  i s  r equ i r ed   t o   p reven t   s eve re   s t r a t i f i ca t ion .  

I n  manned space  missions  pr ior   to   Apollo 1 4 ,  e lec t r ica l ly   d r iven   fans  
i n s i d e   t h e  oxygen tanks   ( see   f ig .  1 . 2 )  were  used t o  ensure   suf f ic ien t   c i rcu la-  
t i o n   o f   t h e   f l u i d .  A s e r i e s  of i nc iden t s   r e su l t ed   i n   e l ec t r i c   a r c ing   o f   t he  
fan  wir ing  in   the  no.  2 oxygen tank  of  Apollo 13, with  combustion  of  Teflon 
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Figure 1 .l- Arrangement of fuel cells and cryogenic  systems in bay 4 of Apollo 13 service  module. 
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wire   insu la t ion   lead ing   to   fa i lure   o f  
the  conduit-entry  plug, a sudden 
release  of   pressure from the   t ank ,  and 
ul t imate   abort ion  of   the  mission.  

I n  June  1970,  the  Apollo 13 
Review Board recommended removal  of 

Heater the  wiring  and fan  motors,  and  also 
suggested  fur ther   invest igat ion  of   the 

insulation need f o r   s t i r r i n g  i n  the  cryogenic 
oxygen-storage  system. I n   t h e  
r edes ign   e f fo r t  by NASA Manned Sgace- 
c raf t   Center ,  an Apollo Cryogenic 

l i shed ,   wi th  one func t ion   be ing   t o  
ana lyze   the   s t ra t i f ica t ion   problem.  
Various  invest igators   contr ibuted  to  
t h a t  team e f f o r t .  With t h e   s t r a t i f i -  
ca t ion   es tab l i shed  as poss ib ly   c ruc ia l  

Figure 1.2.- Oxygen tank no. 2 internal  components by the  team, one  problem was t o   d e t e r -  

Fan motor Oxygen Tank Analysis Team was estab- 

(Apollo 13). mine t h e  adequacy  of  vehicle  rotation 
and  maneuvers t o  produce  suff ic ient  
convect ion  for   the  required  mixing  in  

t h e  oxygen tanks,   wi thout   fans .  The contributions  by Ames Research  Center 
were based on the   s tud ies   descr ibed  i n  t h i s   r epor t ;   p re l imina ry   r e su l t s  were 
reported at a meeting  of  the  analysis  team by B.  Baldwin  and Y.  Shea f fe r   i n  
January 1971 and at t h e  NASA-MSC Cryogenics Symposium by B. Baldwin, E. D .  
Martin, W. A .  Reinhardt , and Y.  Sheaf fer   in  May 1971. 

APPROACH AND SCOPE OF THE STUDY 

The format   o f   th i s   repor t ,  a co l l ec t ion   o f   s epa ra t e   bu t   r e l a t ed   a r t i c l e s  
as chapters ,  i s  used  because  each  ar t ic le  makes cont r ibu t ions   bo th   to   the  
overa l l   subjec t   o f   the   repor t   and   to   genera l  knowledge i n  separa te   spec ia l ized  
f i e l d s  . 

In   chapter  2 ,  Martin  and  Baldwin  develop a set of  approximate  equations 
for  the  Navier-Stokes  description  of  f luid  convection  in a rotat ing  system, 
inc luding   the   in f luence   bo th   o f   e f fec t ive  buoyancy body forces  due t o  tempera- 
t u r e  and   dens i ty   s t r a t i f i ca t ions  and  of arbitrary  t ime-dependent  rotation and 
acce lera t ion   of   the   t ank .  The equat ions  represent  a small-density-variation 
approximation  that i s  valid  under  conditions  of low r e l a t ive   ve loc i ty   bu t   w i th  
s ign i f i can t   dens i ty  and  temperature  variations.  All relevant  terms  represent- 
i n g   e f f e c t s  of ro t a t ion  and  changes in   ro ta t ion   a re   inc luded .  For example, 
the  analysis   includes  the  Coriol is   terms known t o   b e   s i g n i f i c a n t   i n   t h e   t h r e e -  
dimensional  flow, as shown by experiments  with dye i n j e c t e d   i n t o  a water- 
f i l l ed   ro t a t ing   sphe re   (unpub l i shed   r e su l t s  by J. F. Lands, Jr. , and R .  C .  
Ried, Jr., reported at a meeting  of  the Apollo Tank Analysis Team in  January 
1971). The equations are v a l i d   f o r  combined forced and  contained  natural  con- 
vection,  whereas  previous  treatments  of  convection  in  rotating  systems  had 
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deal t   wi th   e i ther   pure   na tura l   convec t ion  or pure  forced  convection.  For  sub- 
sequent  computations,  the  two-dimensional  square-tank  problem i s  formulated. 

In   chapter  3, Lomax and Bailey descr ibe a numerical   f ini te-differencing 
scheme f o r  computing the   convec t ion   of   vor t ic i ty   and   energy   in  a two- 
d i m e n s i o n a l   r o t a t i n g   t a n k ,   s t a r t i n g   w i t h   t h e   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  
derived  in  chapter  2.  The highly  eff ic ient   computat ional  method  employs at 
each  time  step a Buneman Poisson   so lver   for   the   Poisson   equat ion   re la t ing   the  
stream f u n c t i o n   t o   v o r t i c i t y ,  and uses MacCormack's  method f o r   t h e   t r a n s p o r t  
equa t ions   fo r   vo r t i c i ty  and  energy. 

Reinhardt   then  develops  eff ic ient   and  versat i le  methods f o r  the numerical 
evaluation  of thermodynamic properties  of  cryogenic oxygen  from  semiempirical 
equations  (ch.  4 ) .  For  reasons  discussed  above , accurate  thermodynamic- 
proper ty   representa t ions  are needed fo r   computa t ions   i n   t he   nea r -c r i t i ca l  
r eg ion .   In   t he   e f f i c i en t  methods  developed,  an arbitrary choice  of  indepen- 
den t   s t a t e   va r i ab le s  i s  allowed. A procedure  for   the  rapid  evaluat ion  of  
volume in tegra ls   o f   spa t ia l ly   dependent   quant i t ies  i s  introduced  that   depends 
on tempera ture   d i s t r ibu t ion   func t ions .  By t h i s  method, i n s i g n i f i c a n t   l o s s e s  
in   accuracy  are   accepted  in   exchange  for   s ignif icant   savings  in   computat ion 
time . 

In   chapter  5 , Baldwin,  Reinhardt , and  Sheaffer  discuss how t h e  results 
based on the  small-density-variation  approximation  (with  density  considered 
only as a function  of  temperature  and  with  pressure as a slowly varying 
parameter)  can be in te rpre ted   to   de te rmine   the  thermodynamic q u a n t i t i e s .  The 
la t te r   inc lude   the   s lowly   vary ing   average   p ressure ,   the   ac tua l   dens i ty   d i s -  
t r i b u t i o n  , and the   po ten t i a l   p re s su re   d rop .  The problem  of  evaluating  the 
time-dependent  thermodynamic state o f   s t r a t i f i e d   f l u i d  is considered based on 
(1) van der Waals equations  of state,  and ( 2 )  more exact  thermodynamic 
r e l a t i o n s .  

In   chapter  6 , Baldwin,  Reinhardt , and  Sheaffer  present results o f   t he  
numerical   s imulat ion  for   s tudying  the  effect iveness   of   rotat ion  reversal   and 
spinup  from rest on mixing stratif ied oxygen in   t he   Apo l lo   s to rage   t anks .  The 
computations are two-dimensional  simulations  based on the  complete  equations 
developed in   chapter   2 ,   wi th  use o f   t he  methods  from chapters  4 and 5 f o r   t h e  
accurate  thermodynamics  and e f f i c i e n t   e v a l u a t i o n s ,  and  with use o f   t h e   c o q u -  
t a t i o n a l  method descr ibed  in   chapter  3. The s ign i f i can t   e f f ec t s   o f   t he   ro t a -  
t i o n  maneuvers on the   po ten t ia l   p ressure   d rop   a re   d i scussed .  

Each chapter  concludes  with a l i s t  of  references.  

REFERENCE 

1. Ostrach, S. :  Laminar  Flows with Body Forces.  Section F i n  Theory  of 
Laminar  Flows , F. K. Moore , ea. , Vol. I V  of High  Speed  Aerodynamics  and 
Je t   Propuls ion ,   Pr ince ton  Univ. P res s ,  1964, pp. 528-718. 
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SUMMARY 

A s e t  of   s implif ied  equat ions i s  de r ived   t ha t   r ep resen t s  a small-density- 
variation  approximation  of  the  Navier-Stokes  equations  for combined forced  and 
contained  natural   convection  of a s t r a t i f i e d   f l u i d .  These equations  reduce t o  
a generalization  of  the  Boussinesq  approximation  in  the  special   case  of steady 
ro ta t ion   w i th   (va r i ab le )  buoyancy  body forces  , but a l so   p rope r ly   r ep resen t   t he  
forced  convection due t o  time-dependent  rotation. For use i n  subsequent 
numerical  computations,  the  problem  of  convection i n  a ro ta t ing   square   t ank  
wi th  tempera ture   and   dens i ty   s t ra t i f ica t ions  i s  formulated. 

INTRODUCTION 

I n  th i s   chapter ,   equa t ions   for   f lu id   convec t ion   in  a tank   wi th   a rb i t ra ry  
time-dependent  rotation  are  developed  from  the  Navier-Stokes  equations. Sim- 
p l i f i e d  forms of   these  equat ions are obtained  for   use  in   numerical   computat ion 
of the  f luid  convect ion  in   noniner t ia l   coordinate   systems.   Condi t ions assumed 
to   ex i s t   i n   t he   ro t a t ing   t ank   a r e   sma l l   t emDera tu re  and  density  variations  and 
small  apparent body forces .  

> ,  
L .  ' 

_. . 
, ,  . .  

To c la r i fy   the   re la t ionship   o f   the   p resent   p roblem  to   o ther   convec t ion  
problems , consider   the  terminology  of ,  and condi t ions   for ,   var ious   c lasses   o f  
convection. TWO special   cases  of  convection (flow) are forced  convection  and 
natural   convection  (see  Prandtl  , ref. 1, pp. 396 and 412). Natural convection 
i s  fur ther   divided  into  cases   of   f ree   convect ion  and  contained  natural  convec- 
t i o n .  Natural convect ion  implies   that  no  causes  of  the  motion  exist   other 
t han   e f f ec t ive  body forces   ac t ing  on por t ions  of t he   f l u id   w i th   dens i ty   va r i a -  
t i o n s  due to   thermal   expansion.   In   that   case,   effects   of   pressure  and  appar-  
en t  body forces   can  be  expressed  ent i re ly   in  terms of buoyancy forces .  The 
fluid  convection  associated  with  the  present  problem i s  general ly  a combina- 
t i o n  of n a t u r a l  and  forced  convect ion.   In   the  special  (or l imi t ing)   case   o f  
s teady   ro ta t ion  it reduces to   t he   s t a t e   o f   con ta ined   na tu ra l   convec t ion .  

Whenever a f lu id   f low i s  at low ve loc i ty   r e l a t ive   t o   boundar i e s ,   w i th  
r e l a t i v e l y  small accompanying  temperature  and  density  variations, one usually 
considers   the  highly  s impliwing  assumption  of   "constant   densi ty"   of   the   f luid 
flow. A complication  arises,  however, when temperature  differences,   producing 
dens i ty   va r i a t ions   t ha t  are ac ted  upon  by  body fo rces ,   a r e  a s i g n i f i c a n t  , . I  

cause  of  the  convection.  Obviously,   density  variations must  be  accounted  for 
i n   t h e  body-force  terms  (the momentum production), i f  no t   in   o ther   aspec ts   o f  
compressibi l i ty   of   the   f luid  f low.  The usual  approximate method of t r e a t i n g  
problems  of  nearly  constant-density  flow  with "buoyancy"  body f o r c e s   ( c f .  
r e f .  1, p. 412; ref. 2,  p.  320;  ref. 3, p.  248) i s  commonly known as t h e  

and  has  been  applied to   natural   convect ion  dr iven  by  constant  body forces .  
That  approximation  has  recently  been  generalized t o   i n c l u d e   s p a t i a l l y   v a r y i n g  . ,  \. 

body fo rces   i n  a uniformly  rotat ing  container   (see,   e .g . ,   refs .  7-9). 

. .  
, .  

, .  . .  
, .  
I .  

. .  , -  . .  Boussinesq  approximation  (e.g.,  ref. 4 ,  p .  506; ref. 5, p. 684; ref. 6, p. 291, . .  
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The Boussinesq  approximation and i ts  gene ra l i za t ion   t o   va r i ab le  body 
forces   apply  only  to   pure  natural   convect ion,  and are   no t   suf f ic ien t ly   genera l  
for  present  purposes  (with  t ime-varying  -rotation  rates  producing  forced con- 
vect ion) .   Forced  convect ion  in   rotat ing  f lows  of  homogeneous fluids  has  been 
s tudied  extensively  (e .g .  , r e f e r   t o  ref. 8) , espec ia l ly   w i th   r e f e rence   t o   t he  
"spinup"  and  "spindown"  problems. The early  fundamental  treatments  by von 
K&m& and  Cochran  and  by Bijdewadt ( s e e   r e f .  10 ,  pp. 157-1621 showed  fundamen- 
t a l  differences  between  the  spinup and  spindown  problems i n   t h r e e  dimensions 
because   o f   ins tab i l i t i es .  A recent  study  by  Briley  and Walls ( r e f .  11) indi-  
c a t e s   t h a t   t h e s e   e f f e c t s   a l s o   o c c u r   i n  a tank  rotat ing  about  i t s  center  and 
l e a d   t o   T a y l o r   v o r t i c e s   i n   t h e  spindown  problem at some Reynolds  numbers. The 
rotating  forced-convection  f lows  that   have  been  studied  did  not  include strat- 
i f i c a t i o n   e f f e c t s  , t h a t  i s ,  body forces  due t o   d e n s i t y   v a r i a t i o n s .  

In   the   p resent   s tudy ,  a small-density-variation  approximation i s  devel- 
oped i n  a manner analogous t o   t h e  Boussinesq  approximation,  including  both 
var iab le  buoyancy  body f o r c e s   i n  a s t r a t i f i e d   f l u i d  and t h e  allowan'ce for 
forced  convection  produced  by  time-varying  rotation.  Thus,  the  formulation i s  
developed  both to   be   cons is ten t   wi th   the   phys ics   o f   the   t ime-vary ing   ro ta t ion  
(forced  convection)  and t o  reduce t o  a formulation  for  pure  natural   convection 
in   the   l imi t ing   case   o f   s teady   ro ta t ion   tha t  i s  analogous t o   t h e  Boussinesq 
approximation. 

The development  procedure i s  t o  first write  the  compressible  Navier- 
Stokes  system  of  equations  in  vector  form  in an a rb i t r a ry   non ine r t i a l  frame of 
reference.  Then t h e   s e t  of equations i s  reduced t o  an approximate  form f o r  
nearly  constant  density  f low,  accounting  properly for all body-force  terms i n  
t h e  limit as the  temperature and dens i ty   var ia t ions   vanish .  (It w i l l  be  seen 
t h a t   b o t h   t h e  momentum and  energy  conservat ion  equat ions  require   special  con- 
sideration  for  the  present  problem. ) For convenience in   numerical   analysis  , 
the   equat ions are t h e n   c a s t   i n  terms of t h e   v o r t i c i t y  and  stream  functions. 
The special   case  of  a c o n s t a n t   i n e r t i a l  axis of   ro ta t ion  and the  f'urther  spec- 
i a l i z a t i o n   t o  two-dimensional  flow  are  formulated. The two-dimensional equa- 
t ions  in   rectangular   coordinates   are   presented  for   use  in   computat ion  of  con- 
vec t ion   i n  a square  tank. 

Although  three-dimensional  effects  such as axial   f low due t o  Ekman-layer 
suc t ion   ( see  , e. g.  , r e f .  8)  and  development  of  Taylor  vortices  (e.  g. , r e f .  11) 
cannot be represented  in  the  two-dimensional  formulation,  the f irst  numerical 
t reatments   of   this   problem  in  two  dimensions a r e   e x p e c t e d   t o   y i e l d   s i g n i f i c a n t  
information  regarding  the  adequacy  of   vehicle   rotat ion  to   produce  suff ic ient  
convection.  Because  additional  convection mechanisms are   suppl ied by three-  
d imens iona l   e f f ec t s ,   t he   r e su l t s  from the  two-dimensional  formulation are 
be l ieved   to   be   conserva t ive .  

COMPRESSIBLE  NAVIER-STOKES  EQUATIONS I N  A TIME-VARYING 
ROTATING REFERENCE FRAYB 

The Navier-Stokes se t   o f   equa t ions   for   compress ib le   f low  in  a non ine r t i a l  
( r o t a t i n g  and accelerat ing)   reference  f rame i s  
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where D / D t  i s  the   subs tan t ia l -der iva t ive   opera tor  

" = - + v  v D a 
D t  a t  - - 

and  where,   for   la ter   use  , equation  (2.3a) may a l so   be   wr i t ten   in  an equivalent 
form, i n  te rms   of   spec i f ic   en tha lpy   ( re f .   2 ,   p .   322) ,  as 

The set   of   equat ions must be  supplemented  by  appropriate  equations  of  state: 

I n   t h e  above equat ions,   the   Navier-Stokes  expression  for   the  viscous  s t ress  
tensor  z ,  defined  by 

0 = -PI + (2 .5 )  

(where p i s  t he  thermodynamic pressure ,  I i s  the   un i t   t enso r ,  and 0 i s  
t h e   t o t a l   s t r e s s   t e n s o r ) ,  i s  

1-I shear   v i scos i ty   coef f ic ien t  

"second  viscosi ty   coeff ic ient"  

I C =  - - (1 /3)2  : Q - Q 

o = v  bulk   v i scos i ty   coef f ic ien t  

( D V ) t  "transpose"  of  the  dyadic 07 
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Also in   equa t ions  ( 2 . 3 ) ,  the   v i scous   d i ss ipa t ion   func t ion  CP i s  defined  by 

PCP .= : 07 ( 2 . 7 )  

and the   hea t - f lux   vec tor  q i s  given  by  the  Fourier  heat-conduction l a w :  ... 
s = -kVT ... ( 2 . 8 )  

Of primary  concern  here i s  the  apparent  body force   per   un i t  mass i n  t h e  
noniner t ia l   system  g,  which i s  given  by ... 

g =  - [ a  + fi X R* + 2.Q X + s2 X (s2 x !*)I ( 2 . 9 )  

where 

.Q 

.., 

s2 m/at .., 

R* 

t ime-dependent   angular   veloci ty   of   the   noniner t ia l   system  rela-  
t i v e   t o   t h e   i n e r t i a l  system 

pos i t ion   vec tor  from a f ixed   po in t  (O* on f i g .  2 .1 )  on t h e  axis 
o f   ro t a t ion   o f   t he   non ine r t i a l   sys t em  to  a poin t   o f   in te res t  
i n   t he   ro t a t ing   sys t em 

cen t r ipe t a l   acce l e ra t ion  due to   ro t a t ion   o f   t he   sys t em 

Cor io l i s   acce le ra t ion  

Zinear acce lera t ion  due t o   t h e   a n g u l a r   a c c e l e r a t i o n  h 

( t ime-dependent) .Zinear   accelerat ion  of   the  noniner t ia l   system, 
in   excess   of  .Q - x R* 

A s  an e f f e c t i v e  body force   per   un i t  mass, may be   t aken   to   inc lude  any  body 
forces   ac t ing  on the   gas   i n   t he   i ne r t i a l   r e f e rence   f r ame .  

Equations (2 .1)  through ( 2 . 3 )  a r e   de r ived   d i r ec t ly  from the  corresponding 
equat ions   in  an i n e r t i a l  reference frame  by subs t i t u t ing   fo r   t he   t e rm 
p ( D y / D t ) ,  measured r e l a t i v e   t o   t h e   i n e r t i a l   s y s t e m ,   t h e   t e r m s  

( c f .   Becke r ,   r e f .  1 2 ,  p .  251). The term p (D.J/Dt) i s  t h e  only  t e rm  in   t he  
ine r t i a l   sys t em  a f f ec t ed  by the   t r ans fo rma t ion   t o  a noniner t ia l   reference  f rame 
because it i s  the  only  t ime  der ivat ive  of  a vec tor   func t ion   ( re f .  1 2 ) .  

A t  t h i s   p o i n t  it i s  convenient t o   d e f i n e  a pos i t ion   vec tor  5 as the  per-  
pendicular  vector from the   ax i s   o f   ro t a t ion   t o  any point   of   interest   determined 
by ?* ( s e e   f i g .  2.11, such   tha t  



The vector  5 always l ies  i n  a plane 
o f   ro t a t ion .  Its o r i g i n  0 moves 
a long   the   ax is  o f .  r o t a t i o n  as t h e   p o i n t  
o f   i n t e r e s t   i n s i d e   t h e   t a n k  i s  var ied .  
Note t h a t  

where t h e  axis of r o t a t i o n  i s  taken t o  
be   cons tan t   in  i n e r t i a l  sDace.  With 
equat ions  (2 .11) ,  5" may be  replaced 
by 5 everywhere in   equa t ion   (2 .9 ) ,  or Figure 2.1 .- Position  vectors  in a rotating  system. 

REDUCTION  OF  EQUATIONS  FOR  SMALL-DENSITY-VARIATION  APPROXIMATION 

Equations  of  State  and  Small-Perturbation  Theory 

It i s  assumed tha t   p re s su re  and  temperature  variations and the re fo re  a l l  
f l u id   p rope r ty   va r i a t ions ,  are small over  the  space  of  the  tank  and re la t ively 
slow i n  time. The thermal  equation of  s t a t e  p = p ( p  ,T )  i s  then   wr i t ten  as a 
Taylor series about  the  nearly  constant  average s ta te  defined by 
P, = p(poYTo): 

where 

i s  the  thermal   expansion  coeff ic ient  at t h e  s ta te  poy T o y  

i s  the   compress ib i l i ty  of  t h e   f l u i d  a t  t h e  s ta te  p o Y  To' and 
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A T = T - T  
0 

A s  i s  customary i n  convection  problems  involving  buoyancy  forces due t o  
thermal  expansion, when pressure  gradients  are expec ted   t o   be  very small, we 
neglect  not  only terms of O [  (AT)2,(Ap)2]  in  equation (2.13), but  also neglect  
a Ap i n  comparison t o  B AT: 

p 2 p o ( l  - B AT)  (2.16) 

From the  result ing  f low  computations made using  equation  (2.161, one  can 
always  check t h a t  a Ap/B AT i s  small everywhere t o   j u s t i S y  6 p o s t e r i o r i   t h e  
use  of  (2.16). 

By t h e  same procedure as in  equations  (2.13)  through  (2.16) , t h e   c a l o r i c  
equations  of s ta te  i n   ( 2 . 4 )  are simplified  by  assuming  the  pressure  dependence 
of e and h t o   b e   n e g l i g i b l e ,  so  t h a t   t h e   d i f f e r e n t i a l s  de and ah can be  
writ ten  simply as 

de = c V dT : (g) dT 
P 

d h = c  d T =  
P 

The coe f f i c i en t s  a, B ,  cv,  and c must be  determined  from  thermodynamics 
and are no t   cons ide red   fu r the r   i n   t he   8 re sen t   a r t i c l e .  

The formulation  involving  the  f low  equations above with  equation  (2.16) 
subst i tuted  everywhere  for  p can be  regarded as a srna2Z-perturbation theory 
with 

where 

s o  t h a t  6 can be  neglected  in  comparison t o   u n i t y .  It w i l l  be  important i n  
formulating  the  theory not t o   n e g l e c t  p 6 in   those   ins tances  where af ter  sub- 
s t i t u t ion   o f   (2 .18a )   t he  term po effect ively  cancels   out   of   the   equat ions.  

Along with  the  general  assumption  of small temperature,   pressure,  and 
dens i ty   var ia t ions ,   the   t ranspor t   p roper t ies  p and k a re   t aken   t o  be 
constants at a given time. 
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If desired,   the   small-per turbat ion  theory  can be extended  formally t o  
higher  approximations  that   supply  higher-order  corrections f o r  s i g n i f i c a n t  AT 
and Ap i n  the  Taylor  expansions  (about  the state po , po, To) o f  p , h ,  and 
t h e   t r a n s p o r t   p r o p e r t i e s .  The formal  small-perturbation  theory  (with  appro- 
p r i a t e  emphasis on buoyancy e f f e c t s   t o  make them of lowes t   o rder )   y ie lds  a 
f i r s t -order   formula t ion   equiva len t   to   tha t   der ived   be low  in  a less formal way. 

Mass-Conservation  aad Momentum Equations 

This  equation  can  henceforth  be  used i n   t h e  f low  ca lcu la t ion   to   represent  con- 
serva t ion   of  mass and  can  be combined with  the  other   equat ions  wherever  
appropriate .  

In   der iving  the  approximation  for   the momentum-conservation  equation as 
6 -f 0 ,  one  could  proceed i n  a manner equiva len t   to   tha t   for   the   Bouss inesq  
approximation onZy i f  the  angular   ve loc i ty   o f   the   t ank  were cons tan t .   In   the  
present  problem,  however , we must  allow for  t ime-varying  angular  velocity.  
Thus,  convection i n  a r o t a t i n g   t a n k ,  w i t h  f luid-densi ty   var ia t ions  caused  by 
temperature   var ia t ions , falls e s s e n t i a l l y   i n t o  two categories:  

1. If the   angular   ve loc i ty   o f   the   t ank  i s  constant, then  the  condi t ions 
a r e  m e t  f o r   t h e   l i m i t i n g  s t a t e  r e f e r r e d   t o  as "contained  natural   convection." 
For t h a t   c a s e ,   i n   t h e  l i m i t  as 6 + 0 ,  the  f l u i d  approaches a s t a t e  in   equ i l ib -  
rium with   the  walls (no   re la t ive   mot ion) ,  which i s  equ iva len t   t o  a r i g i d  body 
r o t a t i o n .  If,  t h e n ,   t h e r e  are small temperature   and  densi ty   var ia t ions  in   the 
t ank ,   t he   r e su l t i ng   f l ow i s  e n t i r e l y  a small per turbat ion on the  "rigid-body" 
r o t a t i o n .   I n  t ha t  case ,   no   causes   o f   the   mot ion   ex is t   ( in   the   re fe rence  frame 
of   the   t ank)   o ther   than  the  e f f e c t i v e  body forces   act ing on port ions  of   the  
f l u i d  w i t h  densi ty   differences due t o  thermal expansion. Then t h e   e f f e c t s   o f  
pressure and  apparent body forces  can  be expressed e n t i r e l y   i n  terms of buog- 
ancy forces ,   wi th   essent ia l ly   cons tan t   dens i ty   o f   the   f lu id  assumed i n  a l l  
o ther   respec ts .  These are the  assumptions of the  Boussinesq  approximation  used 
frequent ly   in   special   cases   of   natural   convect ion.  

2 .  If only   the  a x i s  of t h e  angular   ve loc i ty  i s  c o n s t a n t   ( i n   i n e r t i a l  
space) , bu t   t he  magnitude of   ro t a t ion  changes s i g n i f i c a n t l y   w i t h  time (e .g .  , a 
s teady   ro ta t ion  i s  stopped or reversed), then   there  are fac tors   p roducing   the  
convection other  than simply  the  apparent  body  forces  acting on dens i ty   d i f -  
ferences due t o  thermal  expansion. Sudden  changes i n   t h e  boundary  rotation 
from a previously  steady  rotation  produce  boundary layers, w i th   s ign i f i can t  
v e l o c i t i e s  a t  the  boundary re la t ive t o   t h e   i n t e r n a l   c o r e .  The r o t a t i o n a l  
i ne r t i a   o f   t he   co re   t ends   t o   keep  it ro ta t ing   wi thout   subs tan t ia l   change ,  
except for fac tors   such  as buoyancy  body  forces  and  sl ight  axial   f low due t o  
Ekman-layer suct ion  (e .g .  , see re f .  8)  , u n t i l   a f f e c t e d   b y   d i f f u s i o n  of t h e  vis- 
cous  forces  from  the  boundary.  In  this  case,   the  assumptions  of  natural  
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convection are v io la ted ,   and  a more general  formulation must be used. It 
should,  however, f o r  present  purposes,   include  the  valid  approximate  formula- 
t i on   o f   na tu ra l   convec t ion   i n   t he   spec ia l  case where t h e   r o t a t i o n a l   v e l o c i t y  i s  
he ld  cons tan t   for  a period  of time. 

I n   t h e  l i m i t  as 6 -+ 0 ( p  - p o l  , p and k approach  constant  values at a 
given time , and  from (2.6) and  (2.20) , 

Assuming that  only  the  apparent-body-force  term i n  (2 .2)  may be  affected  by 
small dens i ty   va r i a t ions ,  we t h e r e f o r e   r e t a i n  6 o n l y   i n   t h a t  term and write 
(2 .2)  as 

(2.22) 

By manipulating  equation  (2.22)  in  various ways , one  can  determine i n  what 
sense 6 must b e   r e t a i n e d   i n   ( 2 . 2 2 )   i n   t h e  l i m i t  as 6 -+ 0.  For t h i s  , various 
terms in   the  quant i ty   g ,   g iven  by  equat ion  (2 .121,   can  be  expressed as gradi- 
en t s  of s c a l a r   q u a n t i t i e s .  Those port ions of (1 + 6 ) g  t h a t  can  be so  
expressed  can  then be regarded  simply as mod i f i ca t ions   t o   t he   p re s su re   g rad ien t  
term, (-l/po)Vp  (which i s  u l t i m a t e l y   t o   b e   e l i m i n a t e d  from the  problem). The 
various  forms-equivalent t o  (2 .22 )   a r e   de r ived   i n   t h i s  and  following  sections.  

F i r s t   c o n s i d e r   t h e   c e n t r i p e t a l   a c c e l e r a t i o n ,  $2 x ( a  x E ) .  For a r b i t r a r y  
vectors   and  the  fol lowing  vector   ident i ty   hoids  ( ref .  13, p .  270) : 

One can write 
$2 I = e 3 ~ ( t )  - 

(2.24) 

where  $3 i s  a u n i t   v e c t o r   i n   t h e   d i r e c t i o n   o f   t h e  axis o f   ro t a t ion ,  so t h a t  
with  (2 .10) ,   equat ion  (2 .24)  becomes 

Fur the r ,   cons ide r   t he   f ac t   t ha t   s ince  $ i s ,  a t  most , a function of time , 
9 = s(t) , then 

v x a ( t )  = o (2.27a) 
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so  tha t  a s c a l a r   p o t e n t i a l  ($ = R* a ( t )  can  be  defined  such  that  

satisfies t h e   v e c t o r   i d e n t i t y  

v x y ( $ = o  

Then equation (2.22) , with (2.12) , (2.26), and (2.273) , becomes 

(with ($ and R both  depending on t ime)  , which may be  cal led  the  "reduced 
pressure"   (c f .  re f .  8, p. 6 ,  for   cons tan t  a) .  

On t h e  Use of  Stream  Functions t o  Reduce t h e   C o r i o l i s  Term 

Under some condi t ions,  the following  procedure  introduces  further 
s impl i f i ca t ion :  

For any a rb i t r a ry   s ca l a r   func t ions  $1 and $ 2  t he   vec to r   i den t i ty   ho lds  
( r e f .  13, p. 278): 

0 ( y 1  x y J 2 )  = 0 (2.30) 

To s a t i s f y  (2.30) , a vec to r  V* ( to   be   de f ined   fo r   spec ia l   ca ses )   can   be  w r i t -  
t e n   i n  terms of $1 and $ 2  as 

- 

(me VeCtor V* i s  normal t o   b o t h  and !$2, and i s  the re fo re   a long   t he  
in t e r sec t ion   o f  the two su r faces  $1 = c1 ( t )  and $ 2  = C 2 ( t )  - In  cases  where 
one def ines  V* t o   b e  v ,  equation (2.20) i s  s a t i s f i e d   b y  (2.30); the   sur face  
i n t e r s e c t i o n  i s  then a s t reamline and $1 and $2 are "stream functions ." 

With equation (2.31) and  use  of the i d e n t i t y  (2.23), the   Cor io l i s   acce l -  
e ra t ion   can   be   wr i t ten  as 

Use of   th i s   express ion  i s  convenient only i n  some s p e c i a l   c a s e s .  



Case 1. No speciaz r e s t r i c t ions -Wi th   no   spec ia l   r e s t r i c t ions ,  it i s  j u s t  
as well. t o  use (2.28)  without  (2.32).because  use  of $1 and $2 i n   (2 .32 )  
appears t o   o f f e r  no s impl i f i ca t ion .  

One cons iders   then   in   (2 .28)   ( . in   the  limit as 6 + 0 )  omi t t ing   t he   pa r t s  
of 6 i n   t h e  term g6 t h a t   a r e   t h e  same as the  remaining body forces:  
-A x g - 252 x v. Hoiiever, i f  it should  happen (as i s  t r u e   i n  some c a s e s )   t h a t  
tge Cor io l i s   force  term (-252 x v)  i s  exac t ly   ba lanced   by   par t   o f   the   p ressure  
gradient  and i s  e f f ec t ive ly   e l imina ted  from the   p rob lem,   t hen   t ha t   pa r t   o f  g 
should  not  be  omitted  from  the term 56 f o r  small 6 .  Therefore,  i f  t h e  
e f f e c t s  of 252 x V a r e  unknown, it i s  b e t t e r   t o  leave 252 x V i n  g i n   t h e   t e r m  
of  order 6 ,-as Gel1 as i n   t h e  body force   t e rm  wi thout   the   Pac tor  6 .  

Case 2. No flow changes i n  z direction-Let e3 be a unit v e c t o r   i n   t h e  
z d i r ec t ion ,   a l so   t he   d i r ec t ion   o f  $(t) (eq.  (2.25) 1. Call the   p lane  z = 0 
t h e  xy plane  (although  other  coordinates may be  used  in   the  plane) .   Let  V* I 
be   t he   ve loc i ty   p ro j ec t ion   i n   t he   p l ane ,  so  t h a t  

Note t h a t  0 v = 0 v* = 0. Then l e t  

so  t h a t  (for u s e   i n   ( 2 . 3 2 ) ) :  

I n  rectangular   coordinates   (x ,y ,z)  : 

i 

(2.33b) 

( 2 . 3 3 ~ )  

(2.33d) 

But,   by  definit ion,  !* = e l u  + $ 2 ~  so t h a t  i f  the  f low i s  two-dimensional, dJ 
i s  the  convent ional   s t ream  funct ion.   In   cyl indrical   coordinates  ( rye  ,z) with 
uni t   vec tors  e r ,  , ~ 3 :  
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Also 

51 yJl = 0 

With equations (2.33) , equation  (2.32) becomes 

and (2.28) becomes 
DV 1 
D t  Po - - - - - VP2 + vV2V + gti - ( 4  X R )  " 

where 

(2.33f) 

with Q and R time  dependent; see reference 14, p .   177 ,   fo r  Q and R 
independent  of time. 

For the   case  where  the  rotat ional   speed i s  constant ( h  2 0 ) ,  equation 
(2 .35)  i s  analogous t o   t h e  Boussinesq  approximation,  with  pure  natural  convec- 
t ion  caused  by "buoyancy"  body forces .  

The case  where the  z component of   ve loc i ty   w(x ,y , t )  i s  zero (two- 
dimensionaZ ~ Z O W )  i s  included  in   case 2 , equations  (2.33)  through  (2.36).  

Case 3. RotationaZ symmetry1 i n  cyZindricaZ coordinates-Consider  cglin- 
d r i ca l   coo rd ina te s   ( rY8 ,z ) ,   w i th   t he   un i t   vec to r  e, - - e3 = c / R  de f in ing   t he  
z direct ion  and the coordinates r and 8 b e i n g   i n  the  xy p l a n e   ( f i g .  2 . 2 ) .  

i 
Let .er and   be   un i t   vec to r s   i n   t he  
respec t ive   d i rec t ions   o f   increas ing  r 
and 8 .  Assume tha t   the   f low i s  
i n v a r i a n t   i n  8. (This would be t r u e  
i n   t h e   r o t a t i n g   t a n k   o n l y  i f  t h e   a x i s  
o f   ro t a t ion  i s  a t  t h e   c e n t e r  of t h e  
tank  and  only  for  those  ranges of  t h e  
parameters  for which  such a flow i s  
stable.  ) )=+ey 

L e t  any plane  through  the  axis  
X 

Ar (constant  e) b e   c a l l e d   t h e  r z  plane.  
I n  this  case , l e t  y* be the  projec- 

Figure 2.2.- Cylindrical coordinates t i o n   i n   t h e   r z   p l a n e   o f   t h e   v e l o c i t y  
for rotational symmetry. at a p o i n t   i n  that  plane , s o  t h a t  

v = Y*(r , z , t )  + g e v e ( r , z , t )   ( 2 . 3 7 )  

1~ d i s t i n c t i o n  i s  made between  rotational  and axial symmetry (v = 0) fo l -  
lowing Synge ( ref .  15)   and  reference 16. 0 
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Note t h a t   w i t h   r o t a t i o n a l  symmetry 

where vr and vz are the   r e spec t ive   ve loc i ty  components i n  t h e  r and z 
di rec t ions  , and do not depend on 8 .  

(2.38) 

Therefore,  from (2.32) , with  (2 .39b) ,  

It i s  seen from t h i s  spec ia l   case   o f   ro ta t iona l  symmetry t h a t   t h e   C o r i o l i s  
force  2G x in   equa t ion  (2.28) i s  in   gene ra l   no t   neg l ig ib l ?   i n   t h ree -  
dimensional  f low,  either when 6 + 0 with  forced  convection ( Q  # 0 a t  some time 
in   the   p roblem)  or for   s teady   ro ta t ion  ( h  E 0 )  with 6 # 0.  Thus , i f  the  f low 
i s  r e s t r i c t e d   t o  be two-dimensional,  then (see case 2 above)   the  Coriol is   force 
can  be  included  in yp and  e l imina ted   in   the  l i m i t  as 6 + 0 ;  but  i f  the  f low 
i s  three-dimensional ,   the   Coriol is   force i s  not  balanced by pressure   g rad ien ts ,  
and s o  cannot i n   gene ra l  be eliminated when 6 + 0 .  

Case 4. Rotat ional  symmetq2 i n  spherical coordinates-Following a proce- 
dure similar t o   t h a t   i n   c a s e  3 above,  consider  spherical   coordinates (r ,$ , e )  , 
with   the   un i t   vec tor  e3 = $/Q def in ing   t he   ax i s  of symmetry from  which t h e  

2See footnote 1. 
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polar   angle  + i s  measured ( f i g .   2 . 3 ) .  
The assumption of r o t a t i o n a l  symmetry 
implies   the  f low i s  i n v a r i a n t   i n   t h e  
azimuthal  coordinate 9 , although  there 
may be a ve loc i ty  component 
v =. v g ( r , + , t ) .  9 

L e t  e,, e$ ,  and e g  b e   t h e   u n i t  
vec to r s   i n   t he   r e spec t ive   d i r ec t ions   o f  
increas ing  r , 4 , 9.  Let any plane 
through  the axis (containing e, and 
e+ , as we l l  as e3 ) be   ca l l ed   t he  r+ 

y ( r , + , t )  at tge   po in t  ( r , + , e )  onto  the 
x plane.  Let V* be  the  project ion  of  

Figure 2.3.- Spherical coordinates for r+ plane,  so  t h a t  
rotational symmetry. v = v*(r,+,t) + s g v g ( r , + , t )  

(2.41) 
Note t h a t  

where vr and v+ a re   t he   r e spec t ive   ve loc i ty  components i n  t h e  r 
d i rec t ions ,  and do not depend on 9. Then, for use i n  ( 2 . 3 2 1 ,   l e t  

$2 = e and $1 = $ ( r , + , t )  

From (2.43b) ,  

and s o  

Noting  that  : 
e3 .er = cos + 
e3 e+ = COS[  IT/^) + + ]  = -s in  + 

(2.42) 

and + 

(2.43a) 
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With equations  (2.43b , d,  and e )  , equation  (2.32)  gives  then 

For  f low  with  rotational symmetry,  equation (2 .44)  for   spherical   coordinates  i s  
equiva len t   to   equa t ion   (2 .40)   for   cy l indr ica l   coord ina tes .  Comments on case 3 
also  apply  here .  

Further comments  on the  proper  forms of t he   equa t ions   t o   u se   fo r  small 6 
can be made  when the   respec t ive  forms  of the vo r t i c i ty   equa t ion  are der ived  for  
the   var ious   cases   in   the   next   sec t ion .  

Vort ic i ty   Equat ion and  Vorticity-Stream  Function  Relations 

Computation of a flow f i e ld   w i th   u se   o f   vo r t i c i ty  as a D r i m a r y  var iab le  i s  
advantageous  because (see L i g h t h i l l ,  ref .  .17, pp.  57-60;  and  Greenspan, ref .  8,  
pp.  20-21): 

1. The  unknown pressure and a l l  conservative body forces  are eliminated 

2. Large,  sudden  changes i n   v e l o c i t y  or angu la r   ve loc i ty   o f   t he   su r f ace  
from the  problem; 

produce  large  sudden  changes i n   f l u i d   v e l o c i t y  and large  impulsive  pressures ,  
whereas the   vo r t i c i ty   d i s t r ibu t ion   va r i e s   smoo th ly .   (Vor t i c i ty  changes are not 
propagated a t  the  speed  of sound, as are ve loc i ty  and  pressure  changes.) 

The f l u i d   v o r t i c i t y  g i s  defined by 

To ob ta in   t he   vo r t i c i ty   equa t ion   co r re spond ing   t o   each   o f   t he  momentum- 
equation  forms (2 .28)  and  (2.35)  use f i r s t  the   vec to r   i den t i ty  

i n   t h e  l e f t  s i d e  of each  of  those  equations , and then take the  cur l   of   each 
equation. With use  of   several   ident i t ies   and  with g given  by  (2.12) , one 
obtains  from (2.28) : 
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I- 

and  from  (2.35)  for flow independent  of’ z: 

These  forms  of t h e   v o r t i c i t y   e q u a t i o n  are reduced  further as follows: With t h e  
v e c t o r   i d e n t i t i e s  

and  with  use  of  the  approximate  mass-conservation  equation  (2.20) , t h e  l e f t  
sides of  equations  (2.47) become 

(The s igni f icance   o f  g 07 i s  discussed  by  Batchelor, re f .  1 4 ,  pp. 267-268.) 
It may be noted for l a te r  convenience t h a t  with  use  of t h e  following  vector 
i d e n t i t y   f o r  the dyadic e,  

along  with  (2 .48) ,  one  can a l s o   w r i t e   t h e   l e f t  sides of equat ions  (2 .47)   in  the  
”divergence form’’ 

a w  at + 0 (yw) - v (,y) - vv2, (2.50b) 

where,  for  example, in   Car tes ian   coord ina tes  

The r i g h t  side of (2.4’7a) is reduced  fur ther  by using the i d e n t i t y  
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If then   t he   quan t i t i e s  I! X ( 4  X 8) and 0 X (54 X v)  are expanded  according t o  
(2 .48) ,  f o r  the   case   under   cons idera t ion   (cons tan t   iner t ia l  axis of r o t a t i o n )  
with . 

equation  (2.47a)  with  (2.50a) and (2.52) becomes 

where 

We have now a r r ived  a t  a point  where,  for  consistency  with  the  previous  develop- 
ment f o r  small 6 ,  we can  neglect 6 i n  comparison t o  uni ty   in   the  body-force 
term.  Equation  (2.54) i s  then  approximated  f inally  by 

In   the   case  where the  f low i s  independent 0.f z ,  equation  (2.55) i s  equivalent 
to   equat ion  (2 .47b)   reduced  to  

I n   t h e   f u r t h e r   s p e . c i a l i z a t i o n   t o  two-dimensional flow (w = 0 )  , t h e   v o r t i c i t y  i s  

w - e3u (2.57) - 

so  tha t   (2 .56 )  becomes the   sca la r   equa t ion  

- - V V 2 U  = [y6 x E l z  DU 
D t  - 2 i  

26 



i 

a a a 6  a 6  
a t  ax aY aY 
- a w  + - ( u w )  + - (vu) - vv2w = g 2 5  - g1 - - 2 i  

o r  i n  two-dimensional  polar  coordinates ( r  ,e) , 

where gl and g2 a r e   t h e  x and y  components of g, and gr and go are t h e  
r and e components of g in   (2 .12)  . 

I 

It i s  noted from the   vo r t i c i ty   equa t ion   (2 .55 )   t ha t :  

1. I n   t h e  l i m i t  as 6 -+ 0 ,  the  nonsteady  ro;ation  term  in  the momentum 
equation  (2.28) i s  exhibi ted  only  in   the  term -252 i n   t h e   v o r t i c i t y   e q u a t i o n ,  
whereas the   Cor io l i s  term r e s u l t s   o n l y   i n   t h e  term 252 Ov i n  t h e   v o r t i c i t y  
equation, and both of these are   in   genera l   no t   negl ig ib le  as 6 -+ 0 i n   t h r e e -  
dimensional  flow  where aV/az # 0 .  

2.   In   the   l imi t ing   c&e  of   r ig id-body  ro ta t ion   ( re la t ive   ve loc i ty  V -t 0 
and 6 -f 0 )  , equat ion  (2 .55)   reduces  correct ly   to  

I 

I 

" a @  
a t  - -2c 

3. In   the   spec ia l   case   o f   s teady   ro ta t ion  (6 = 0 f o r  a l l  t ime)  , the   on ly  

4. In   geneyal ,   the   dr iving  factors   in   (2 .55)   are   both  the  buoyancy  term 
driving term i n  (2 .55)  o r  (2.56) is the  buoyancy-force  term (!A) x 9. 

( y 6 )  x g and  -23 , these  being  the  only  terms  that   are  independent  of , or con- 
tain  terms  independent  of , t h e   r e l a t i v e   v e l o c i t y  V.  Thus , i f  both 
( y 6 )  X 6 = 0 and h = 0 ,  we have -t 0 so  tha t  a r igid-body  rotat ion  (condi t ion 
of no convection)lis  approached. The Coriol is   term 2fj VV i n  the   th ree-  
dimensional  equation  plays  an  essentially  passive  role;  t h a t  i s  , it apparently 
acts   s imply  to   absorb  (oppose)   par t   of   the   effect   of   the   dr iving  terms  (see 
Ostrach , r e f .  7 )  , s ince  it contains and vanishes as t h e  flow  approaches a 
r igid-body  rotat ion when both ( y 6 )  x g and Q are  zero.  

I 

In   connect ion  with  the  use  of   the   vort ic i ty   equat ion  (2 .55)  o r  (2.56) it 
i s  convenient t o  use  the  s t ream  funct ions  for   the  special   cases   noted i n  t h e  
prev ious   sec t ion ,   and   to   re la te   the   s t ream  f 'unc t ion   to   the   appropr ia te  
v o r t i c i t y  component. 



s o  tha t   i n   r ec t angu la r   Ca r t e s i an   coord ina te s ,  

g - $1" ay $2 - ax  - e 3 v 2 @  (2.62) 
- aw aw 

In   the   case   o f   cy l indr ica l   coord ina tes  ( r  ,e yz)  with  f low  independent  of z , 

g = e (L *) - ee aw - e3V2@ 

V2Q = AE r 2  6 (r 2) + 2 3  8 9 2 1  (2.63b) 

r r a e  (2.63a) 

where 

For two-dimensional  flow,  with  (2.57) for w = 0 , (2.62) and (2.63)  reduce t o  

w = -V2@ (2.64) 

In  case 3 above,   with  rotat ional  symmetry in   cy l ind r i ca l   coo rd ina te s  , 

where 

With 

from ( 2 .  

av e =" 
r az (2.66b) 

v = - - -  I a$ and =?-.?!k, 
r az (2.67)  r z r ar 

39b) , e q u a t i o n   ( 2 . 6 6 ~ )  becomes 

Note t h a t  
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7 
1 (2.68) 

i n   t h i s   c a s e  , w i s  not d i r e c t l y   r e l a t e d   t o  V 2 @ ,  s ince  
9 



Equation  (2.68)  would  be  usef'ul in   conjunct ion  with  solving (2.55) f o r  t h i s  
special   case.  

I n  case 4 above,   with  rotat ional  symmetry in   sphe r i ca l   coo rd ina te s  

where 

With 

from (2.4%)  equation ( 2 . 7 ~ )  becomes 

Note aga in   tha t  w i s  not  d i r e c t l y   r e l a t e d   t o  V 2 $ ,  which i s  given by e 

Equation  (2.73) would be useful  i n  conjunction  with  solving  (2.55) for  t h i s  
spec ia l   case .  

Energy  Equation 

The energy-conservation  equation i s  considered  in  two  forms,  (2.3a)  and 

assumed t o  be   zero   (eq .   (2 .20) )   in   express ing   the   v i scous   s t ress   t ensor  
(2 .3b) .  With the   ca lo r i c   equa t ions   s imp l i f i ed   t o   t he  forms  of ( 2  . l 7 )  with 



i n  (2 .6)   for   use  i n  (2.7)  so t h a t  

and with k i n   ( 2 . 8 )  assumed to   be   nea r ly   cons t an t  as noted  above,  the  energy 
equat ions   (2 .3)   t ake   the  forms 

and 

"p - D t  
DT a = kV2T + pQ 

For the   condi t ions   under   cons idera t ion   in   th i s   p roblem,  we have  re ta ined  the 
term pV V in  (2.76a)  for  reasons  given  below. 

I I 

If t h e r e  i s  any appa ren t   con f l i c t   i n   t he   r e su l t s  from e i t h e r  of t h e  two 
f o r m  of the  energy  equation, one  should  use  the form t h a t  i s  most cons is ten t  
with  (2.16) , r a the r   t han   w i th   t he  more r e s t r i c t ive   equa t ion  (2 .20)  , which 
r e s u l t s  from l e t t i n g  6 -f 0. Obviously,  for a l i q u i d  i n  which c I cv  and 
p 2 constant , t h e r e  i s  no d i f f e rence   i n   t he  two equations  (with $ / D t  v e q  
small). But in   the   p resent   p roblem,   there  i s  a s ign i f i can t   d i f f e rence  between 
cp and cv, so w e  must cons ider   the   re la t ive   cons is tency   of  e i t h e r  neglect ing 
PV V in   (2 .76a)  o r  neglect ing Dp/Dt in   (2 .76b) .  

Consider first equation  (2.76a).  One could  use  (2.76a)  with  (2.20)  sub- 
s t i t u t e d  i f ,  i n   f a c t  , 

IpY << lkV2TI 

To determine  whether pv V i s  neg l ig ib l e ,  write (2 .1)  as 

and  use  the  approximation  from  equation  (2.16)  that 

s o  t h a t  

Near t h e   c r i t i c a l   p o i n t   o f  a f l u i d ,   f o r  example  oxygen with T = 150' K and 
B : O.Ol/OK, one f inds , f o r  example,  from t h e  van der Waals equat ion  of   s ta te ,  
t h a t  

- P 
P > (RT)perfect   gas  

= O(cvT) (2.78)  
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Therefore, from equations  (2.77)  and  (2.781, 

o r  

The r e s u l t   ( 2 . 7 9 ) . i n d i c a t e s   t h a t  pV V would not be   negl ig ib le   in   de te rmin-  
i n g  D T / D t  from (2.76a) .  

- - 

Consider  then  the  use  of  equation  (2.76b)  with  use  of  the  approximate 
form  of the  equat ion of state (2.16)  where B (eq .   (2 .14a) )  i s  t o   b e   d e t e r -  
mined  from a func t iona l   re la t ionship   such  as 

p = P(PYT) 

Because  of ( 2 . 8 0 ) ,  we can  wri te  

With the  approximation  represented  by  equation  (2.16) 

and  from the   de f in i t i on   o f  f3 in   (2 .14a)  

equation  (2.81) becomes 

(2.80) 

(2.81) 

(2.82) 

But f o r  a s ta te   func t ion   such  as (2 .80 ) ,  a fundamental   identity from calculus  
s t a t e s   t ha t   t he   b racke ted   quan t i ty  i n  equation  (2.83a) i s  ident ica l ly   zero .  
Therefore 

QL 0 
D t  (2.8373) 

This   resu l t  shows i n  a r a t i o n a l  way tha t   u se   o f   t he   app rox ima te   s t a t e   r e l a t ion  
(2.16) i s  most compatible  with  the  approximate  energy  equation  (2.76b) i n  t h e  
form (as 6 +- 0 i n   ( 2 . 1 8 a ) )  : 



(2.84) 

(See  a lso ref.  10 ,  pp.  126,  127.)  With use of (2.201,  the l e f t  s i d e  of (2.84) 
may a l s o  be w r i t t e n  as 

where in   the  special   case  of   two-dimensional   f low,  

PROBLEM DEFINITION AND APPROXIMATE FLOW EQUATIONS 
FOR  TWO-DIMENSIONAL  SQUARE TANK 

In   t h i s   s ec t ion ,   t he   t heo ry   deve loped  above i s  s m a r i z e d  and spec ia l i zed  
for  computation of  the  convection  caused  by  time-dependent  rotation  and  density 
va r i a t ions  due t o  tempera ture   var ia t ions   in  a two-dimensional  square  tank. The 
configuration i s  as shown in   f i gu re   2 .4 .  The x,y coordinate system i s  f ixed 
r e l a t i v e   t o   t h e   t a n k ,   w i t h   t h e   o r i g i n  a t  the   corner  as shown. The r o t a t i o n  i s  
about a point  a d i s t ance  Re from the   t ank   cen ter ,   and   the   rad ius   vec tor  from 
t h a t   p o i n t  i s  denoted by R ( s e e   f i g .  2 .1)  with components i n   t h e  x and y 
d i r e c t i o n s   e q u a l   t o  

-7 

The time-dependent  angular  velocity R Y 

i s  p o s i t i v e  when counterclockwise.  In 
the   x ,y   coo rd ina te s   t he   e f f ec t ive  body 
force   per   un i t  mass, given  by  equation C 

(2.12 ) , becomes 

g = e l g l  + e2g2  (2.87a) 
where 

g l  - - R l R 2  + 2Rv + R 2 i  - a1 
( 2 . 8 7 b )  

g2 = R 2 R 2  - 2Qu - R l R  - a2 

,L 

1 

" 
X 

RC 

%f 

( 2 . 8 7 ~ )  Figure 2.4.- Square tank configuration. 
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and where a1  and a2 are prescribed x and  y  components of 5 (defined  follow- 
ing  equat ion  (2 .9  )) and  u  and  v a r e   t h e  x  and  y  components of ? (eqs . 
( 2 . 3 3 ) ) .  

With 6 given  by  equat ion  (2 .18b)   the  vort ic i ty   equat ion  (2 .58 '~)  becomes 

The enera   equat ion   (2 .84)   wi th   (2 .85)  becomes 

where the   d i ss ipa t ion   func t ion  from (2.75) becomes 

It i s  convenient t o  use   t he   vo r t i c i ty - s t r eam  func t ion   r e l a t ion  from  equation 
(2.64):  

where  from  (2.33d) .) 

S u f f i c i e n t   i n i t i a l  and  boundary  conditions  are  needed to   spec i fy   t he   p rob -  
lem comple t e ly .   In i t i a l ly  ( t  = 0 )  a tempera ture   d i s t r ibu t ion  is specif ied  and 
t h e   v e l o c i t i e s  u  and  v are  everywhere  zero  (rigid-body  rotation). A t  all 
times,  

The condi t ion  in   (2 .92)  on the  normal component of   ve loc i ty   ( tangent ia l   der iva-  
t i v e   o f  $1 can  be  replaced  by $ = 0 on t h e  boundary for  appl ica t ion  . t o  equa- 
t i o n  ( 2  . go ) .  The condition on t h e   t a n g e n t i a l  component of  velocity  (normal 
der ivat ive  of  $1 can  then  be  incorporated  into a condi t ion on u at each 
boundary for   equat ion  (2 .88) .  The temperature or i ts  normal  derivative may be  
spec i f i ed  on t h e  boundary a t  a l l  times for   equat ion  (2 .89a) .  

The funct ion Q(t) must be   p rescr ibed   as  a condition of t h e  problem. As  
one example, f o r  sudden r eve r sa l  of ro ta t ion   (wi th  Q = -51, f o r  t < 0)  , one may 
use an approximation of 
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Q ( t )  = -51 + 251 S(t) 
0 0 

(2.93a) 

where Ro i s  a constant and S ( t )  i s  t h e  unit s tep   func t ion ,  

> 
S ( t )  = 0 y t < 0 

= 1 ,  t 1 0  

Then from (2.93a) ,  

i(t) = 2QoS(t)  ( 2 . 9 3 ~ )  

where S ( t )  i.? the   Dirac  del ta   funct ion.  The simplest  numerical  approximations 
t o  S(t) and S ( t )  may be  used;  for example (with t l  very small), 

(2.94a) 

For convenience i n  further  treatment,   equations  (2.86)  through  (2.94) may 
be  put  into  dimensionless form using  the  following  dimensionless  variables and 
parameters  (where L i s  an   a rb i t ra ry   l ength)  : 

X - x  v t  \ E = -  L ¶  n - L Y  T = g  

WL2 T - To m* = - H =  ,=L 
v ’  TR - To ’ V 

2Q(t) 2Qo 

UL VL u = -  v = -  
v ¶  V 

n*(.r) = vL-2 , R E  = VL-2 > 
G1 = Gr(gl/RoL) , G2 = Gr(gz/QoL) 

a: = al/Qs , a2 = a 2 / n o ~  

@ %  = (L4/v7-)@ 

2 2 

3E 2 

1 

(2.95a) 

with 
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"L2 
Reynolds number Re = - 

V 

p V C .  

k Prandt l  number Pr = 

Equations (2.86) through  (2.94) become , i n  dimensionkss form (dropping the 
a s t e r i s k s  from a*, s2* , @*, a:, and a* from  here  on) : 

2 

where 

@ = + + /E \ a g  + (2.101) 

wi th  conditions 

The value  of H or i ts  normal  derivative may be   spec i f ied  on the  boundary. 
The dimensionless  function Q ( T >  may be spec i f i ed ,  for example, by equations 
(2.93) and (2.94)  with t and t l  r ep laced   by .  T and TI. 



CONCLUDING REMARKS 

A set   of  general   approximate  equations  has  been  developed  that   represents 
the  Navier-Stokes  description  of  convection  of a t h e r m a l l y   s t r a t i f i e d   f l u i d   i n  
a container   with  arbi t rary  t ime-dependent   rotat ion.  The equat ions   a re   va l id  
f o r  combined forced  and  natural   convection  with  significant , b u t   s u f f i c i e n t l y  
small, density  and  temperature  gradients.  A l l  relevant  terms  representing 
e f f ec t s   o f   ro t a t ion  and  changes in   ro ta t ion   a re   inc luded .  

The special   case  of  convection i n  a two-dimensional  square  container was 
formulated  for  subsequent  computations. 
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3. COMPUTATIONAL  METHOD FOR CALCULATING 

CONVECTION  IN A ROTATING  TANK 

Harvard Lomax and F. R .  Bailey 





SUMMARY 

A time-dependent  f inite-difference method i s  presented   for   ca lcu la t ing   the  
convect ion  of   vort ic i ty   and  energy  in  a s t r a t i f i e d ,   s u p e r c r i t i c a l   c r y o g e n i c  
f lu id   conta ined   wi th in  a two-dimensional  square  tank  rotating.  in a gravi ta t ion-  
l e s s   f i e l d .  The f ini te-difference  approximations  to   the  convect ive  par t   of   the  
governing  small-density-variation  form  of  the  Navier-Stokes  equations are based 
on an exp l i c i t   p red ic to r - co r rec to r  scheme of  second-order  accuracy i n  time and 
space. A d i scuss ion   of   the  s tabi l i ty  and  accuracy of  t h i s  method i s  included. 
The s o l u t i o n   f o r   t h e  stream funct ion  that   appears   in   the  governing  equat ion i s  
determined  by  using a d i r e c t   s o l u t i o n  of Poisson’s  equation  based on double 
cyc l ic   reduct ion .  

INTRODUCTION 

I n   t h i s   c h a p t e r ,  a numerical   f ini te-differencing scheme i s  described tha t  
can  be  used t o  compute the  convect ion  of   vort ic i ty   and  energy  within a two- 
dimensional   square  tank  rotat ing  in  a g r a v i t a t i o n l e s s  f i e ld .  

The purpose  of   the  analysis  i s  t o  determine  whether  local  temperature 
s t r a t i f i c a t i o n s   i n  an i n s u l a t e d  oxygen t ank   t r ave l ing   i n   space  at high  Pressure 
could  be  broken  up, o r  s t i r r ed ,  by  very low rates of   ro ta t ion  and  by r o t a t i o n  
reversa ls .   Ef fec ts   o f   bo th   v i scos i ty  and heat   conduct ion  are   included  in  the 
study  of the time-dependent  mixing. The mathematical model tha t   descr ibes   the  
two-dimensional  behavior  of  such  an  environment i s  given  by  the  Navier-Stokes 
equat ions  for   small -densi ty   var ia t ions,  one  form  of  which i s  g iven   in   the   next  
sec t ion .  Many numerical   calculat ions  of   these  equat ions  have  been  carr ied  out  
but   not   with t h e  physical  conditions  described  above.  These  physical  condi- 
t ions  guided the  choice  of  the  numerical   procedure.   In  particular,  a method 
was chosen tha t  has very l i t t l e  numerical   d iss ipat ion  but  i s  not  highly  accu- 
r a t e   w i t h   r e g a r d   t o   d i s p e r s i o n ,   s i n c e   t h e  amount bu t   no t   t he   de t a i l s   o f   t he  
mixing was cons idered   to   be   o f  paramount  importance. 

PROCEDURE 

The geometry  of t h e  problem i s  shown i n   f i g u r e  3.1. A two-dimensional 
f l u id   w i th in  a square i s  be ing   ro ta ted  a t  a ra te  s2 about some po in t   ex t e r io r  

7)=10 --KM + + +... + + + t o  t h e  boundaries  of  the  square.  
’ t -”c l  

$jLx 
K H +  0 0  0 0 + Since we are present ing  only  the 

+ o o  o o +  bas ic   p r inc ip les   o f   the   numer ica l  

3 + 0 0  o o +  
2 + 0 0  0 . 0  + 

process , t h e   d e t a i l s   o f   d e r i v i n g   t h e  
p a r t i c u l a r  form o f  the  Navier-Stokes 

?:o-  I + + + . . .+  + + equation  given  next are omitted. The 
k/j I 2 3 JH JM governing  equations derived i n  chap- 

I I t e r  2 are 
E = O  E = 1.0 

aw a a 
a-r ag  a n  

a 2 w  a2u a H  aH dQ 

+ - (vu )  + - (vu)  (a )  Geometry ( b )  Finite  difference  grid 
- 

Figure 3.1.- Geometry  and differencing grid for = + - G2 + - 
two-dimensional  square tank. (3.la) 
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(3 . lb)  

The independent  variables -r and ( E  ,TI) are dimensionless  forms  representing 
time and Car tes ian   (x ,y)   space ,   respec t ive ly ;  w, H ,  and Y are t h e  dependent 
var iables   represent ing  dimensionless   forms  of   the  vort ic i ty ,   temperature ,   and 
stream funct ion ,   respec t ive ly .  The va r i ab le s  GI and G2 represent  the  apparent 
body fo rces   i n   t he   ro t a t ing   sys t em as def ined   in   chapter  2 and Pr i s  t h e  
P rand t l  number. Equations  (3.la) , ( 3 . l b ) ,  and ( 3 . 1 ~ )  are r e f e r r e d   t o  as t h e  
vort ic i ty ,   energy,   and  Poisson  equat ions,   respect ively.  Note t h a t   t h e   v o r t i c -  
i t y  and  energy  equations ( la ter  r e f e r r e d   t o  as the   t r anspor t   equa t ions )  are 
wr i t t en   i n   conse rva t ive  form. 

The f ini te-difference  computat ional  domain i s  shown i n   f i g u r e  3 . l ( b ) .  The 
crosses  represent  the  boundary  points  corresponding t o  t h e  walls o f   t he  con- 
t a i n e r ,  and t h e  open po in t s  refer t o   t h e   i n t e r i o r   p o i n t s  a t  which t h e  dependent 
va r i ab le s  can  change values.  Any g r id   po in t  a t  which a dependent  variable  can 
change i n   t i m e  i s  r e f e r r e d   t o   h e r e  as a moving p o i n t   f o r   t h a t  dependent vari- 
able .   This   s implif ies   the  descr ipt ion  of   the  matr ix   formulat ions  used  in   the 
analysis  of  the  numerical   methods.  The value  of  any  dependent  variable,   say 
o, a t  a g r i d   p o i n t  i s  defined as 

where 

'j 
= (j-l)Ac j = 1, 2 ,  . . .,JM 

-r  AT n = 0,1, . . . n 

R e f e r r i n g   t o   f i g u r e   3 . l ( b )  , we see t h a t   t h i s   d e f i n i t i o n   p u t s  5 = 0 along  the 
l e f t  edge  and TI = 0 a long   the   bo t tom  of   the   g r id ,   and   res t r ic t s   the  number of 
moving p o i n t s   t o  2 S j s JH; 2 5 k s KH. 

The t ransport   equat ions and t he   equa t ion   fo r   t he  stream func t ion   a r e   qu i t e  
d i f f e ren t   i n   cha rac t e r .  Both the   vo r t i c i ty   and   ene ra   equa t ions  are parabol ic ,  
time-dependent p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  ; whereas the  Poisson  equat ion  for  
t h e  stream function i s  e l l i p t i c  and expl ic i t ly   independent   of   t ime.   This   leads 
to   the  fol lowing  general ly   accepted  computat ional   pat tern.  Given the  values   of  
a l l  dependent  variables  over  the mesh at the  beginning of  a time i n t e r v a l :  



1. Advance t h e   v o r t i c i t y  and energy one time increment (e i ther  imp l i c i t l y  

2. Using t h e  newly eva lua ted   vo r t i c i ty ,  compute the  stream function by 

3. For increased  accuracy,   cycle   s tep one  and  two i n  a conventional 

o r  e x p l i c i t l y ) .  

solving  the  Poisson  equation. 

predictor-corrector   process .  

V O R T I C I T Y  AND ENERGY E W A T I O N S  

Finite-Difference Scheme 

The f ini te-difference  approximations  to   the  t ransport   equat ions are based 
on the predictor-corrector  scheme developed  by MacCormack ( re f .  1). The d i f -  
ference  formulations are in   conserva t ive  form  and are accura te   to   second  order  
in  both  space and time, having  an  error  proportional t o  a third  space  der iva-  
t i v e   i n   d i s p e r s i o n  and a four th   space   der iva t ive   in   d i ss ipa t ion   ( see  re f .  2 ) .  

P red ic to r   fo r   t he   vo r t i c i ty :  

A T  n + -  - 2 w  + w  n n 1 + -  ( wn - 2 w  + w  n ,  A T  n 
( A < ) 2  ( w j + l  ,k j , k  j-1 ,k ( A Q ) ~  j , k + l  j ,k j ,k-1 

Predic tor   for   the   energy:  

(3.2b) 

Correc tor   for   the   vor t ic i ty :  
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Correc tor   for   the   energy:  
/ 

In   these   express ions   the   convec t ive  terms are differenced  forward  and  backward 
i n   s p a c e   f o r   t h e   p r e d i c t o r  and  corrector   equat ions,   respect ively.   In   pract ice ,  
however, th i s   p rocedure  i s  programmed t o   b e   c y c l i c  s o  t h a t  a l l  four   poss ib le  
combinations  of  forward-backward  differencing are used  in   four   successive time 
s t eps .   In   t he   i n t e rmed ia t e   s t ep  6 and ? are ob ta ined   v i a   t he   so lu t ion  of t h e  
Poisson  equation  for ? from G .  S i m i l a r l y ,   i n   t h e   f i n a l   s t e p  Un+l and Vn+' 
are obtained  by  the  solut ion  of   the  Poisson  equat ion  for  Ynel from  un+l. 
No t i ce   t ha t   t he   d i f fus ion  terms are cent ra l   d i f fe renced   in   bo th   the   p red ic tor  
and cor rec tor .  The term An in   equa t ions   (3 .2a )   and   (3 .2~)  i s  evaluated 
according t o  An = (dL?/dT)A.r where dn/d-r i s  a specified  time-dependent 
f u n d i o n .  

S t a b i l i t y  

The s t a b i l i t y  of a general  set  of  nonlinear  difference  equations i s  
usua l ly   e s t ima ted   by   s tudy ing   t he   s t ab i l i t y   o f  an   "equiva len t"   se t   o f   l inear  
difference  equat ions.  We accept   this   phi losophy  and  point   out   fur ther   that   not  
on ly   can   t he   s t ab i l i t y  of t he   l i nea r   d i f f e rence   equa t ions   be   e s t ab l i shed   bu t  
t h e i r  complete  analytic  solution can be  determined  in a s t ra ightforward manner. 

Consider,   for example , the  simple  one-dimensional  diffusion  equation 

A well-known difference  vers ion i s  

which  can be  expressed  in   vector ,   matr ix   notat ion  by 

o r  
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where E i s  the  displacement   operator ,  and f contains  the  boundary  condi- 
t i o n s .  Note t h a t  when t h e r e  i s  no  space  index,  the  time  index is  w r i t t e n  as a 
subscr ip t   ra ther   than  a superscr ipt .   This  i s  done i n   t h i s   s e c t i o n   t o   c l a r i S y  
exponentiation. If f i s  a vector   of   constants’  the so lu t ion  of equation 
(3.5) can  be  wri t ten (I being   the   un i ta ry   mat r ix)  

The cj are  constants  determined by t h e   i n i t i a l   c o n d i t i o n s  , and X j  are t h e  
va lues   o f   the   sca la r  E ,  which a r e   t h e  assumed d i s t inc t   roo t s   o f   t he   cha rac t e r -  
i s t i c  polynomial  equation 

P(E) : det(E1 - E) = 0 ( 3 . 7 )  

The matrix B and the   vec to r  f in   equa t ion  (3.5) depend  on the  choice 
of   differencing scheme  and t h e  boundary  conditions. If they  represent   equat ion 
(3.4) with  boundary  conditions  given at t h e  two  ends 5 = 0 and 5 = 1, they  
be come 

g = T(B,  1 - 2B, B )  
T I ( 3 . 8 )  

f = (B91,  0 ,  * - y 0 ,  M J M )  

where B : pA-r/AC2 and T i s  a square   t r id iagonal   mat r ix   def ined  by 

. . .  0 0 

d-1 do dl  0 0 

0 d-1 do 0 0 

. . .  

0 0 0 do d 

0 0 0 . . .  d l  dl 

The eigenvalues  of T ( d l , d o , d l )  are 

( 3 . 9 )  

where M i s  t h e  number of moving p o i n t s .   N o t i c e   t h a t   i f  g i s  independent  of 
E , the   roo ts   o f   de t  (ET - g )  = 0 coincide  with  the  eigenvalues  of g. Using 

lThat i s ,  i f  t h e  boundary  conditions  are  independent  of T .  When such is  
no t   t he   ca se   t he   pa r t i cu la r   so lu t ion  is more complicated,  but  can be found (see 
r e f s .  3 and 4 ) .  
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2 fixed p6inTs I. J M  
JH- I  moving points 2 5 j 5 J H  

the  normalized mesh spacing shown in   ske t ch  (a)  , we 
can  f ind  the  eigenvalues  of B, in   equa t ion   (3 .8) ;  
and  using  equation (3.6) , we can write t h e   a n a l y t i c  
so lu t ion   t o   equa t ion  (3.4) as 

+ . . . . . . . . . . . . . . . . .  + 

j = I  2 3 

t 
E EO 

(3.11a) 
Sketch (a) 

under   the imposed  boundary  conditions.  Equation 
( 3. l l a )  has   the   a l te rna t ive   express   ion  

Clear ly ,  as n increases   the   so lu t ion   of  a se t   o f   l i nea r   d i f f e rence  equa- 
t i o n s  can grow unboundedly i f  the  absolute  value  of  any X j  in   equa t ion  (3.6) 
is  greater  than  one.  Two remarks  should now be   cons idered .   F i r s t ,  it i s  pos- 
s i b l e   i n  an anaZytic c o n s t r u c t i o n   t o  set  t o  zero a l l  the  elements i n   t h e   v e c t o r  
c j  multiplying a given X j  . The magnitude  of  such XJ could  be  greater   than 
one  and a bounded so lu t ion  would r e s u l t  as n + m. Thls behavior i s  b a s i c a l l y  
r e l a t e d   t o  a saddlepoint  problem ( r e f .  5 ) .  Second, it i s  p o s s i b l e   t h a t  a l l  of 
t h e  I h j  I a re  less than one bxt  they  have a s t ruc tu re   such   t ha t  a computed 
so lu t ion  w i l l  appear t o   b e  growing i n  an  unbounded  manner as t h e  f i r s t  severa l  
time s teps  are calculated.   This  behavior i s  d iscussed   in   re fe rence  6 , p.  152. 
Nevertheless,  equations  such as equation  (3.11) are the   exac t   so lu t ions   o f   the  
l inear  difference  approximations and they t e l l  us   precisely  (except   for   round-  
o f f   e r r o r )  what a computer  would  calculate a f te r  any number of  t ime  steps.  

The s t ab i l i t y   o f   d i f f e rence   equa t ions  i s  genera l ly   no t   ( for  an exception 
see re f .  7 ,  p.  222)  viewed i n   t h e  above l i g h t .  More of ten  an amplif icat ion 
f a c t o r  i s  developed  along  lines similar to   those   in t roduced  by Von Neumann, as 
discussed  in   reference 8. Thus t h e  term 

i s  in t roduced   in to   the   d i f fe rence   equat ion  and t h e   r a t i o  X = $(T + AT)/S(T) i s  
determined.  This  ratio i s  r e f e r r e d   t o  as the   ampl i f ica t ion   fac tor  and t h e  
values k and k,, are ca l l ed   t he  wave numbers. The c o n d i t i o n   f o r   s t a b i l i t y  
i s ,  of   course,   that  I XI -< 1. Applying th i s   t echnique   to   equa t ion  (3.4)  , one 5 
f inds  

or  

This appears t o   b e   t h e  same as the   t e rm  ins ide   the   paren thes is   in   equa t ion  
(3.11a) ,   but  it i s  not  because  the  arguments of the  cosine terms are d i f f e ren t .  
T?re can make t h e  two approaches  identical,  however, i f  we reexamine the  discus-  
sion  under  equation  (3.7).  
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The solution  given  by  equation (3.11) depended on the  nature   of   the   matr ix  
B y  which i n   t u r n  depended on the  boundary  conditions.  Suppose,  instead of f ix -  
ing   the   condi t ions  at < = 0 and 6 = 1;we requi re  that  the   so lu t ion   be   per i -  
odic.   In  such a case  equation (3.8) would become 

where T i s  a square  "periodic-tridiagonal"  matrix  defined by 
"P 

Tp(d-l.,dO , d l )  = 

the  eigenvalues  of which a re  

(3.15) 

p, = J:-l c j  - 28 + 28 cos j P n ( j  - 1)In 
j=1 JH - 1 (3.17a) 

when the  boundary  conditions  are  periodic. This has the   a l t e rna t ive  form 

+I ' +JH } Perlodlc  boundary 
& =  +JM condlllons 

. . . . . . . . . . . . . . . . . . 
J' I  2 3 

t 
JH JM 

t 
& = O  E =  I 

Sketch (b) 

where A E  = l/(JH-l) f o r  a periodic  mesh (see 
sketch ( b ) ) .  The te rm  in   the   b racke ts   in   equa t ion  
(3.17)  corresponds to   equat ion   (3 .13)  . 

The ana ly t i c   so lu t ions   t o   l i nea r   d i f f e rence  
equations  with  periodic  boundary  conditions axe 
especial ly   easy  to   f ind  because  the  e igenvalues   in  
t he i r  g matrix  can  be  readily  determined.  In 
f ac t ,   t he   s imp les t  way t o   f i n d  these eigenvalues i s  
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of t en  by the   s epa ra t ion  of var iables   technique employed i n   t h e   d i s c u s s i o n  of 
equation  (3.12).  Consider, for example, t h e  model equat ion  that   couples  con- 
vection  and  diffusion 

The f ini te-difference  approximation  equivalent   to   the one used on equation 
(3.1) t o  form equat ion  (3 .2)   gives  

where a f c A - r / A < ,  o f t e n   r e f e r r e d   t o  as t h e  Courant  number. Subs t i t u t ing   t he  
pred ic tor   equa t ion   (3 .19a)   in to   the   cor rec tor   equa t ion   (3 . lgb)   g ives  

(3.20) 

The g matrix for t h i s   d i f f e rence   equa t ion   w i th   pe r iod ic  boundary conditions 
i s  t h e  "periodic-pentadiagonal" matrix 

where 
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,,, ,. .L .._ ._ _ _  

and i t s  exac t   ana ly t ic   so lu t ion  i s  

where 

these  being  the  e igenvalues  of  equation  (3.21a)  with  elements  defined  by  equa- 
t ion  (3.21b).   Although  these  eigenvalues  are complex,  each complex 13 has a 
conjugate s o  t h e  summation ( 3 . 2 2 a )   r e s u l t s   i n   r e a l  numbers. 

It can  be shown t h a t  1 X3 I has  extrema at  j = 1 and at j = 1 + ( J H - 1 )  /2. 
Notice   that  I X1 I = 1 f o r  a l l  a and 8 .  Designate  the  value  of Xj at  
j = 1 + ( J H - 1 )  /2  by A,, and one can wr i t e  

The s t a b i l i t y  boundary i s  formed  by  finding  the  values  of a and B for which 
I A, I 5 1. This  boundary i s  formed  by  two l i n e s  : one,  where X, 5 1, which 
r e s u l t s   i n  

2B(2B - 1) - a2 I 0 (3.24) 

and t h e   o t h e r ,  where X, 2 -1, which r e s u l t s   i n  

The a , B  combinations t h a t  produce s t ab i l i t y   fo r   equa t ion   (3 .19 )   w i th  
periodic  boundary  conditions are shown i n  f igure  3 .2 .  The rectangle  for which 
0 I la I I 6 / 2  and 0 I B I 1/2   represents   the   p rac t ica l   s tab i l i ty   boundary .  
Note t h a t  B = LI A - c / A S 2  i s  taken t o  be   pos i t i ve   s ince   on ly   pos i t i ve   d i f fus ion ,  
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Figure 3.2.- Stability boundaries for equations (3.19) 
with periodic boundary conditions. 

v i s c o s i t y ,  or thermal   conduct ivi ty  
coe f f i c i en t s  are considered. On t h e  
other  hand a = c A T / A ~  can be  posi- 
t i ve  or negative  depending on t h e  
d i r ec t ion   o f   t he  wave ve loc i ty .  Note 
t h a t   t h e  effect  of  coupling  diffusion 
t o  convection i s  t o  lower  the maximum 
generally  allowable value of  the 
Courant number from 1 t o  0.866. It 
fol lows  f rom  the  above  that   the   s tabi l -  
i t y  of t h e  method represented  by equa- 
t i o n  (3.19) when app l i ed   t o   pe r iod ic  
boundary  conditions  requires  that  A t  
be chosen so t h a t  

A T  5 both - and - - (3.26) A S 2  
2?J 2 I C 1  

I n   t h e  more important  two-dimensional  case  the  concepts  described  above 
remain t h e  same but   the   a lgebra  becomes more involved. The p a r t i a l   d i f f e r e n -  
t i a l  equation  coupling  diffusion and  convection  for  two-dimensional  flow i s  

where U ,  V ,  and 1-1 are constants i f  the  equat ion i s  t o   b e   l i n e a r .  If t h e  
predictor-corrector  sequence,  defined  for  one-dimensional  f low by  equation 
( 3 . 2 ) ,  i s  appl ied  to   equat ion  (3 .271,  and periodic  boundary  conditions  are 
imposed, de ta i led   ca lcu la t ions  show tha t   t he   s t ab i l i t y   boundar i e s   fo r  I A, I 
are t h e  same as those  given  by  equations  (3.24) and ( 3 . 2 5 )  except t h a t  

. 
(3.28) 

This means that   the   difference  equat ions  with  per iodic   boundary  condi t ions  are  
s t a b l e  i f  

I n   t h e   a p p l i c a t i o n   t o   p h y s i c a l  problems the   e f fec t iveness   o f   the  
predictor-corrector  method, described by equation  (3.19) f o r  t h e   l i n e a r  and 
equat ion  (3 .2)   for   the  nonl inear   cases ,   respect ively,  depends on t h e   r e l a t i v e  
magnitudes  of t he   d i f fus ion   coe f f i c i en t s  ( i . e . ,  the  v i scos i ty  and thermal con- 
duc t iv i ty )  and some representa t ive  or average  value  of   the  veloci t ies .  If 
the re  i s  a high  degree  of  diffusion (11 l a rge)   then  the first term in  equat ion 
(3.29) would b e   t h e  smallest and t h e  time s t e p   s i z e  would be  forced,  by  reasons 
of s t a b i l i t y ,   t o   b e   u n n e c e s s a r i l y  small f o r  a given  accuracy.  In  such  cases an 
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impl ic i t   d i f fe renc ing   of   the   d i f fus ion  terms i s  suggested (refs. 9 ,  10). If ,  
on the   o ther   hand ,   the   d i f fus ion  i s  low r e l a t i v e   t o   t h e  magnitude  of the  (ave-  
rage)   veloci ty ,   the   physical   requirements   associated  with  the domain of depen- 
dence limit t h e   s i z e   o f   t h e  t i m e  s t e p ,  and t h e   e x p l i c i t  method described i s  
ent i re ly   adequate .  4 

In   the  par t icular   case  regarding  the  convect ive  mixing  of  oxygen at high 
pressure and  low temperature,   both  the  viscosity  and  the  thermal  conductivity 
are s o  low (ch. 6 )  t h a t   t h e   e x p l i c i t  method i s  e n t i r e l y   s a t i s f a c t o r y  from t h e  
viewpoint   of   s tabi l i ty .  

Accuracy 

The accuracy  of  the  differencing scheme given  by  equation (3.19) can  be 
e s t ima ted   i n   s eve ra l  ways. By accuracy w e  mean, of  course,  how well  it repre- 
s e n t s   t h e   b a s i c   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   ( 3 . 1 8 ) .  We choose  here t o  dis- 
cuss   this   accuracy by der iving the "modi f ied   par t ia l   d i f fe ren t ia l"   equa t ion ,  
tha t  i s  , t he   d i f f e ren t i a l   equa t ion   ac tua l ly   r ep resen ted   by   t he   d i f f e rence  equa- 
t i o n  (see r e f .  2 )  and  comparing t h i s   t o   t h e   b a s i c   p a r t i a l   d i f f e r e n t i a l  equa- 
t i o n .  One can der ive   the   modi f ied   par t ia l   d i f fe ren t ia l   equa t ion   for   equa t ion  
(3.19) by  expanding  each  term  in a Taylor series about the point  represented by 
( n , j  ).  Time  der ivat ives   of   higher   than f i r s t  order   are   e l iminated by repe t i -  
t i v e   u s e  of equation  (3.20) i t s e l f .  The result   of  such a procedure  gives 

The coef f ic ien t   o f   the  t h i r d  der iva t ive   represents ,   to   the   lowes t   o rder ,   the  
dispers ion or phase   e r ror ,  and the   coef f ic ien t   o f  t h e  fourth  der ivat ive  repre-  
sen ts ,   aga in   to   the   lowes t   o rder ,  the d iss ipa t ion  or di f fus ion   e r ror .  

Note t h a t  t h e   e r r o r   i n   d i s p e r s i o n  i s  due only t o   t h e   f i n i t e   d i f f e r e n c i n g  
of  the  convection  term  (given by the   coef f ic ien t   o f  c in   eq .   (3 .18) )  and i s  
of order  ( A < ) 2 ,   AT)^. The e r r o r   i n   d i s s i p a t i o n  or diffusion i s  caused  by  the 
f ini te   differencing  of   both  the  convect ion and d i f fus ion  terms, orders  being 
( A T ) ( A E ) ~ ,    AT)^, and ( A < ) 2 ,    AT)^, respec t ive ly .  When the magnitudes  of t h e  
v i scos i ty  and  thermal  conductivity  coefficients are small, as they are i n   o u r  
intended  physical   appl icat ion,  the p r inc ipa l   e r ro r  i s  in   d i spe r s ion  and i s  pro- 
p o r t i o n a l   t o   ( c / 6 ) [ ( A ~ ) ~  - c ~ ( A T ) ~ ] .   I n   t h e   p r a c t i c a l  problem, c represents  
a l o c a l   v e l o c i t y  and t h e  magnitude  of the  veloci ty   var ies   throughout  the tank. 
One can show t h a t   t h e   t e r m   ( c / 6 )  [ ( A<)2 - c2(   AT)^] i s  zero when c A - r / A E  i s  
e i t h e r   z e r o  or one,  and a maximum i n  tha t  i n t e r v a l  when c A T / A <  = 1/6. Since 
I c A T / A < ~ ~ ~ ~  I 1 f o r  s tabi l i ty ,  t h e  maximum er ror   in   d i spers ion   g iven   by   the  
lowest  order  error term i n   t h e   m o d i f i e d   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n  (3.30) i s  

i f  numer i ca l   s t ab i l i t y  i s  the   on ly  bound on t h e  time s t e p   s i z e .  



To ge t  less d ispers ive   e r ror   wi th   the   d i f fe renc ing  scheme given  in   equat ion 
(3.19) one must choose a time s t ep   such   t ha t  c A T / A E  < 1/6. 

POISSON EQUATION 

The f ini te-difference  approximation  to   the  Poisson  equat ion ( 3 . 1 ~ )  for t h e  
stream function may be  written  with  second-order  accuracy  by  the well-known 
five-point  formula as 

j = 2,  . . ., JM-1 , k = 2 ,  . . ., K"1 

Given a (JM-2) X (K"2)  i n t e r n a l   d i s t r i b u t i o n   o f   v o r t i c i t y  and 2(JM + KM - 2 )  
boundary  values  for  the. stream function as shown i n  figure 3 . l ( b )  , w e  wish t o  
f ind   t he  (JM-2) x (K"2)   in te r ior   va lues   o f  Y t ha t   s a t i s fy   equa t ion   (3 .31 ) .  
We can f ind  such a solut ion  by  i terat ive  techniques  such as SOR and AD1 ( re f .  
111, but   s ince  the  equat ion i s  l i n e a r  we can a l so   so lve  it by   d i rec t   invers ion  
of a set   of   l inear ,   s imultaneous  a lgebraic   equat ions.  These so-ca l led   d i rec t  
methods r e q u i r e   f a r   l e s s  computing time than   the   i t e ra t ive   ones  when used t o  
f ind   so lu t ions   to   equa t ion   (3 .31) .  The p a r t i c u l a r  one  used  here w a s  developed 
by Buneman ( r e f .  12 )  and i s  referred t o  as t h e  double  cyclic  reduction method. 
It i s  an extension  of  the  odd/even  reduction scheme (refs .  13,  14). 

Odd/Even Reduction  of a Tridiagonal  Matrix 

Consider   the  t r idiagonal  se t  of  algebraic  equations 
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Multiplying  the odd rows by a 

b2-2 -1 

I o  -1 

f 2  

f 3  

f 4  

f 5  

f 6  

f 7  

f 8  . -  

and  adding  the  adjacent rows t o  it gives 

(3.32) 

(3.33) 



which i s  obviously  recursive i f  t h e  number of rows equals 2 -1 where L i s  an 
in t ege r .  If w e  s e t  

L 

and l e t  M represent   the  midpoint   in  the  u vector  ( M  = 1 + 2 ), we have 
after L-1 recursions 

L- 1 

This i s  so lved   for  I.$~ and a backward  recursion  gives  the  completed  solution. 

One of the  advantages  of   this  scheme i s  the e f f ic ien t   use   o f   core   s torage .  
Only  one a r r ay  i s  needed i n  the ca l cu la t ion ,  it i s  i n i t i a l l y   f i l l e d   w i t h   t h e  
elements  of f ,  which are then  overwritten  and  replaced by the  values  of ';1 i n  
the   so lu t ion .   Table   3 .1  shows how an  array2  of 17 i s  overwrit ten  by  the  for- 
ward recursion,  a t  the  end  of  which  every  other  value of f has  been  overwrit- 
ten.   Table  3.2 shows t h e  backward recursion.  The f ina l   va lue   o f  ug i s  
computed  by equat ion  (3 .35) ,   then u5  and  u13 are found,  and s o  o n ,   u n t i l  a l l  
t h e  u from 2 t o  16 are   evaluated  and  have  replaced  the  or iginal  f 2 ,  . . ., 
f16- 

The same concept  can  be  applied t o   f i n d   t h e   d i r e c t   s o l u t i o n   o f   t h e  two- 
dimensional  equation  (3.31). When equation  (3.31) i s  mult ipl ied by ( A < ) 2  and 
wr i t t en   i n   ma t r ix  form, w e  obtain 

- - 
A -I 

-I A -1 0 

-I A -I 

0 
-I A -I 

-I A 

- 
!!2 

!3 

YJ" I 

(3.36) 

where 4 i s  a (KM-2) x (KM-2) t r id iagonal   mat r ix   wi th  -2 [1  + ( A < / A ~ I ) ~ ]  on t h e  
diagonal  and ( A < / A T ~ > ~  on each  s ide;  i s  the  (K"2)  x (KM-2) i den t i ty   ma t r ix ;  
'yj i s  the vector  of s t ream  f lmct ions  in  the  j t h  column o f   t h e   g r i d ;  and f i  
i s  t h e   j t h  column of   vort ic i t ies   and  boundary  values .  Note t h a t  J M  must be 
2L1+1  and KM must be  2L2+1  where L1 and L2 are in t ege r s .  

2L = 4 giving Z 4  - 1 = 15 moving p o i n t s ,   b u t  a word at each  end i s  
reserved  and set  t o  zero t o   s i m p l i f y   t h e  backward  recursion; see table 3.2. 
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TABLE 3.1.- FORWARD  RECURSION  IN  ODD/EVEN  REDUCTION.  COLUMN 
ON  LEFT  IS  ORIGINALLY  STORED, THEN SUCCESSIVELY  USED AND 
OVERWRITTEN  BY  COLUMNS 2, 3, AND 4 

TABLE 3.2.- BACKWARD  RECURSION  IN  ODD/EVEN  REDUCTION.  COLUMN  ON 
LEFT  IS  ORIGINALLY  STORED,  THEN  OVERWRITTEN  BY  COLUMNS 2, 3, 4, 
AND 5 

fl f 0.0 
f2 
f3 
f4 
f5 

f7 
f6 

fl0 
fll 
f12 
f13 
14 

f15 
f16 
f17 
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The process  of  odd/even  reduction  described  for a simple matrix such as 
that   g iven by  equation  (3.32)  can now b e   a p p l i e d   t o  a block  matrix  such as t h a t  
given  by  equation (3.36). The concept i s  s impl i f i ed  i f  we refer at once t o  
t a b l e s  3.1 and  3.2  and r e c a l l   t h a t  matrix and  a lgebraic   ar i thmetic  are iden t i -  
c a l   i n   a d d i t i o n  and d i f f e r   i n   m u l t i p l i c a t i o n   o n l y  on comut iv i ty .   Cons ider ,  
f i r s t ,   t a b l e  3.1. Note t h a t  a l l  operat ions are formed by simple addi t ions  and 
mul t ip l ica t ions   o f   the  data e x i s t i n g   i n   t h e   s i n g l e  f a r ray  at any  given  stage 
i n  t he   ca l cu la t ions .  The same i s  t r u e   i n   t h e  two-dimensional  case,  except  that 
the   opera t ions   a re  on t h e  column vec tors  f .  For example, f o r  the two- 
dimensional   case  in   table  3.1 t h e  f irst  entry  of   the  second column would be  
replaced by A( ' s f 3  + f2  + f4  , which i s  a t r i d i a g o n a l   m u l t i p l i c a t i o n   i n t o  a 
vector  and two vec tor   addi t ions .  

The two-dimensional  equivalent  of  equation  (3.34a) is formed by the   ma t r ix  
de f in i t i ons  

The e s s e n t i a l   p a r t   o f   t h i s   r e l a t i o n s h i p  i s  t h a t  can always be  reduced 
t o  a product of t r i d i agona l   ma t r i ces .  Thus 

(3.38) 

In genera l ,  6") i s  the  product   of  2 t r id iagonal   mat r ices   tha t   have   cons tan t  
en t r ies   a long   the  two of f   d iagonals   and   d i f fe r   on ly   by   the   cons tan t  Xj along 

t i o n ,  we can  apply it twice   i n   success ion   t o  form  each of A(2 ) f s  , - 
A(2 )E1 3 , and  four  times t o  form 4' 3 ) f 9  i n   t h e  two-dimensional  equivalent  of 
t a b l e  3.1. 

R- 1 

the   d iagonal .  If w e  write a subrou t ine   t ha t  w i l l  perform  such a 

The remarkable  property  of  the  process  being  described comes i n   t h e  two- 
dimensional   equivalent   of   the   procedure  out l ined  in   table   3 .2 .  The matrix 
equivalent  of an a lgebra ic   d iv is ion  is  a product  using  the matrix inverse .  
This would great ly   complicate   the  extension of t h e  backward  recursion i f  t h e  
f a c t o r i z a t i o n  sho5m in  equat ion  (3 .38)  d id  not   exis t .   Since  such a fac tor iza-  
t i o n  does e x i s t  , hovever,   the  actual  computation  of % i n   t h e  two-dimensional 
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equivalent   to   equat ion  (3 .35)  

(3.39) 

i s  found by performing 2 t r i d i a g o n a l   i n v e r s i o n s   ( e a c h   i d e n t i c a l   t o   t h e  
scalar  manipulations shown i n   t a b l e s  3.1 and  3.2 on t h e   d a t a   i n  c ~ .  For exam- 
p l e  , the  two-dimensional  equivalent  of ( f 3+f l+f 5) /a( 2, i n  table 3.2 i s  

L- 1 

and i s  computed by two s u c c e s s i v e   c a l l s   t o  a t r id iagonal   invers ion   subrout ine ,  
each ca l l   hav ing  a d i f f e ren t   cons t an t   fo r  the diagonal   entry  but   both  with a 
f ixed   cons t an t   fo r   t he  two off-diagonal   entr ies .  

This  describes  the concept of one-  and  two-dimensional  odd/even  reduction 
of   the  Poisson  equat ion.   In  application t o   t h e  two-dimensional  case  (eq. 
(3.31)) the  matr ix   products  formed  by the  forward  recursion  can  lead  to  very 
l a rge   f l oa t ing   po in t  numbers. A c lever  way t o  avoid  this  numerical  complica- 
t ion  has  been  devised  by Buneman and a FORTRAN program t h a t  computes t h e  
Poisson  equation  for  Dirichlet   boundary  conditions  using Buneman's version  of 
odd/even  reduction i s  l i s t e d   i n   r e f e r e n c e  12 .  

BOUNDARY CONDITIONS 

The boundary  condition for the energy  equat ion  (3 . lb)  i s  s a t i s f i e d  by 
specif 'y ing  e i ther   the  temperature  or t he   hea t  flux at the  w a l l .  The boundary 
condi t ion  for   the  Poisson  equat ion ( 3 . 1 ~ )  i s  s a t i s f i e d   b y   s e t t i n g  '4 = 0 along 
the  edges.  This  corresponds t o   t h e   c o n d i t i o n  of  no mass flow  through any por- 
t i o n   o f   t h e  w a l l .  The boundav  condi t ion   for   the   vor t ic i ty   equa t ion   (3 .1b)  i s  
somewhat  more s u b t l e  and i s  described  below. 

For a v i scous   f l u id ,   t he   add i t iona l   cond i t ion   o f   no   s l i p  a t  t h e  walls i s  
m e t  i f  t h e  normal  stream-function  derivative (or t angen t i a l   ve loc i ty )   van i shes  
a t  the  walls. This  boundary  condition i s  s a t i s f i e d   i n   t h e   v o r t i c i t y   e q u a t i o n  
(3 . l a )   i n   t he   fo l lowing  way. F i r s t ,   n o t i c e  from  equation ( 3 . 1 ~ )   t h a t  along a 
hori   zont  a1 wall 

w = -Y 
and  along a v e r t i c a l  wall rlrl 

w = -Y 55 

(3.41a) 

(3.41b) 

s ince  Y i t s e l f  i s  zero  a long  the walls. Next consider a Taylor 's  series 
expansion  for   the stream funct ion at a po in t  on t h e  wall. Using it t o   f i n d   t h e  
value  of Y a t  an i n t e r i o r   p o i n t   n e x t   t o   t h e  w a l l ,  one f inds   ( tak ing   the   bo t -  
tom w a l l  as an  example) 



Again Y - .  must be  zero  s ince it i s  the   va lue  of Y at t h e  w a l l  , and now we 
can  apply  the  no-sl ip   condi t ion  by  a lso  set t ing  the  tangent ia l   veloci ty  a t  t h e  J 3 1  

equal   to   zero .   This   reduces   to  a boundary  condition for  w ;  
w a l l  w i s  given  by 

(3.43) 

where Y j  ,2 has  been  calculated  in  a previous  predictor  or corrector  sequence. 
Similar  formulas are a l so   der ived   for  the o ther  walls. Formulas  of  higher 
order  may be obtained by  expanding  about  deeper i n t e r i o r   p o i n t s ;  for example, 
the  second-order  approximation  for  points ( j , l )  i s  found  by  simultaneously 
solving  the  expansions 

t o   o b t a i n  

(3 .45)  

S i n g u l a r i t i e s   e x i s t   i n  the  ana ly t ic   so lu t ions   for  the flow at the  corners 
of the  box,  and it i s  poss ib l e   fo r  a c o r n e r   t o  l i e  outs ide  the  radius   of  con- 
vergence  of a Taylor series expansion  about  one  of  the  neighboring  points.  In 
f a c t ,  the  ca lcu la t ions   d id  show ins t ab i l i t i e s   nea r   t he   co rne r   po in t s  when t h e  
higher  order  equations were used,  and it i s  believed  they  developed for t h e  
reason  just   descr ibed.  As a result , the  lower  order  equations,   typified  by 
equation (3.43),  were used for t h e  boundary  condition on the   vor t ic i ty   th rough-  
out the  ca lcu la t ions .  The sac r i f i ce   i n   accu racy  i s  not  considered  important 
f o r   t h e   n a t u r e  of the  mixing  problem  involved. 

COMPUTATIONAL  PROCEDURE 

To begin  the  convect ion  calculat ions,  the  i n i t i a l   v e l o c i t i e s  are set t o  
zero and the   t empera ture   d i s t r ibu t ion   spec i f ied .  The subsequent  computational 
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procedure i s  described  by  the  following  steps:  

1. Ca lcu la t e   t he   p red ic t ed   vo r t i c i ty  and  temperature  distributions from 

2.  Calculate  the  corresponding stream function  by Buneman's double  cyclic 

3. Apply t h e  w a l l  boundary  conditions  for  the  vorticity  from  equation 

4. Calcula te   the   cor rec ted   vor t ic i ty  and  temperature  distributions from 

5. Calculate  the  corresponding stream function as i n   s t e p   2 .  
6. Apply t h e  wall boundary  condition as i n   s t e p  3. 

equations  (3.2a)  and  (3.2b). 

reduction method. 

(3.43). 

e q u a t i o n s   ( 3 . 2 ~ )  and (3.2d).  

The calculat ions  for   one time s t e p   a r e  now complete. The procedure  continues 
u n t i l   t h e   d e s i r e d  number of  t ime  steps are complete. 

CONCLUDING REMARKS 

A f ini te-difference  predictor-corrector  scheme has  been  described  for  cal-  
culat ing  convect ion  in  a ro ta t ing   t ank .  The assumption i s  made t h a t   t h e  sta- 
b i l i t y  bounds  and the  order  of  accuracy  of a set  of  nonlinear  difference equa- 
t i ons  can  be  estimated  by  studying an "equivalent" se t  o f   l i n e a r  model 
equations. Such being  the  case , it i s  pointed  out   that   not   only can t h e  sta- 
b i l i t y  of the  l inear   difference  equat ions  represent ing  convect ion  be  es tab-  
l ished,   but   the   complete   analyt ic   solut ion  of  them  can b e   w r i t t e n   f o r   t h e  
n( th)   t ime  s tep   wi thout   ever   go ing   to  a computer.  Furthermore,  such  an  ana- 
l y t i c   s o l u t i o n   t o  a set  of  l inear  difference  equations  with  periodic  boundary 
cond i t ions   p red ic t s   s t ab i l i t y   boundar i e s   i den t i ca l   t o   t hose   ob ta ined  from  an 
ampl i f ica t ion   fac tor   ana lys i s .  The accuracy  study  for  these  convective equa- 
t i o n s  i s  based on a study  of the  mod i f i ed   pa r t i a l   d i f f e ren t i a l   equa t ions ,  and 
it shows that   the   approximations are character ized  by  second-order   errors   in  
both  dispersion and d i s s ipa t ion .  

F ina l ly ,  a fas t ,  e f f i c i e n t  and d i rec t   numer ica l   so lu t ion   to   Poisson ' s  
equation i s  described. It i s  based on double  cyclic  reduction  techniques 
introduced  by  Buzbee, Golub , and  Nielson in   r e f e rence  13. 
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4. CALCULATION OF THERMODYNAMIC  PROPERTIES OF OXYGEN 

NEXR  THE  CRITICAL  POINT 

Walter A .  Reinhardt 





SUMMARY 

Methods are developed  for   the versatile and e f f i c i e n t   e v a l u a t i o n   o f   t h e  
thermodynamic properties  of  cryogenic oxygen. The semiempirical  equations  of 
state of  Stewart are used i n   t h i s   d i s c u s s i o n .  An arb i t ra ry   choice  of indeDen- 
dent  thermodynamic variables wi th in  a l i m i t e d  set  i s  allowed. Comments on pro- 
cedures   tha t   l ead  t o  an  expansion  of  the  variable set  are given. A method f o r  
t he   e f f i c i en t   r ap id   eva lua t ion   o f   i n t eg ra l s   r ep resen t ing  volume averages  of 
s .pa t ia l ly   vary ing  thermodynamic q u a n t i t i e s  i s  .described. A number of  graphs 
are g iven   tha t  show state r e l a t i o n s   p l o t t e d   i n   d i f f e r e n t  ways t o  demonstrate 
t h e  methods  used. I n   a d d i t i o n   t o   b e i n g   i n s t r u c t i v e ,   t h e s e   c u r v e s   s e r v e  as a 
valuable  ready  reference on cryogenic oxygen p rope r t i e s .  

INTRODUCTION 

The p r i n c i p a l   o b j e c t i v e   o f   t h i s  work i s  t o  formulate   the thermodvnamic 
properties  of  cryogenic oxygen t o  pe rmi t   t he i r   e f f i c i en t   eva lua t ion  by  elec- 
tronic  computers. The r e s u l t i n g  computer  programs are used  in  conjunction w i t h  
o the r  codes i n  the simulation  study  of the  behavior   of   gases   s tored  in   tanks  of  
maneuvering  space  vehicles. Comments  on the  complementary  numerical  codes 
along  with  discussions on the  complete  problem  and  background  surveys  related 
t o  t h i s  report  are given i n   c h a p t e r  1 of t h i s   r e p o r t .  It i s  worthwhile t o  
o r i e n t  the  reader, however, on t h e  material p r e s e n t e d   i n   t h i s   a r t i c l e  by 
br ie f ly   rev iewing  a f e w  pe r t inen t   cons ide ra t ions   t ha t   necess i t a t ed   t he   ava i l a -  
b i l i t y   o f   a c c u r a t e  thermodynamic p r o p e r t i e s   t h a t  can  be  rapidly computed. 

In   the   case   o f  the  Apollo  spacecraf t ,  t he  onboard  cryogenic  storage  system 
provides  gaseous  hydrogen  and oxygen  (oxygen i s  o f   p a r t i c u l a r   i n t e r e s t   i n  t h i s  
s tudy)   used   in  the e l e c t r i c a l  power system  and  environmental  control  system  of 
t h e  command and se rv ice  module. Fluids are s t o r e d   i n   t h e  system at  tempera- 
t u r e s  and   p re s su res   s l i gh t ly   g rea t e r   t han   c r i t i ca l  where the   dens i ty  i s  s o  
l a rge  tha t  t h e   f l u i d  i s  not   dis t inguishable  as being e i ther  l i q u i d  or gas. 
Cryogenic  storage  allows  spacecraft minimum volume and weight requirements t o  
be met and  ensures  single-phase  delivery  of the  f l u i d s   ( r e f .  1). To maintain 
a cons tan t   p ressure   wi th in   the   t anks ,  as r equ i r ed   by   t he   e l ec t r i ca l  power and 
environmental  control  systems as oxygen i s  drawn from the system,  heat i s  added 
by: means o f   con ta ined   e l ec t r i ca l   hea t e r s .  The added heat  can  remain  in  the 
neighborhood  of the hea te r s  , however, i n  the  absence  of  conductive or convec- 
t ive   mix ing;   there   then   resu l t   l a rge   thermal   g rad ien ts  ("thermal s t r a t i f i c a -  
t i on" )   w i th in   t he   s to red   f l u ids .  Because  oyygen has a very low thermal conduc- 
t i v i ty ,   conduc t ion   cu r ren t s  are neg l ig ib l e .  Also,  convective  mixing  processes 
do not   t ake   p lace   in   the   absence   o f  any spacecraf t   acce le ra t ions   in   the   o ther -  
w i s e  gravity-free  environment. If p a r t i c u l a r l y  severe t h e r m a l   s t r a t i f i c a t i o n  
occurs,  a spzcecraf t  maneuver  (such as a midcourse  correction on a f l i g h t   t o  
t h e  moon, for example)  could lead t o  mixing t h a t  would t h e n   r e s u l t   i n  a l a r g e  
abrupt  pressure  decrease or "pressure  collapse"  (ch. 1 and r e f .  2 )  w i t h  a t ten-  
dan t   poss ib i l i t y   o f   ca t a s t roph ic  equipment f a i l u r e .   P r i o r   t o   A p o l l o  1 4 ,  fans 
were inc luded   wi th in   the   s torage   t anks   to   ensure  that  t h e   f l u i d  w a s  mixed  and 
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uniform  temperatures  maintained. The sub jec t   s tudy   o f   t h i s   r epor t  i s  t h a t  of 
i n v e s t i g a t i n g   t h e  use o f   veh ic l e  maneuvers ( i n   p a r t i c u l a r ,   r o t a t i o n s )  as a 
means toward  the  maintenance of uniform  temperatures  and  pressures. The nomi- 
nal   operat ing  pressure  requirements  of the  cryogenic   gas   s torage system are 
900 ' 3 5  ps ia   (62  '2.4 a t m )  o r ,  s t a t e d   i n  a s l i g h t l y   d i f f e r e n t  manner, t h a t   t h e  
pressures must not  deviate  by more than  about 4 percent   f rom  the mean s t a t e d  
value.   This   suggests   that   accurate   re la t ions are requi red   for   gas   p roper t ies  
if re l i ance  i s  t o   b e   p l a c e d  on in te rpre ta t ions   ga ined  from numerical computa- 
t i o n s .  The semiempirical  thermodynamic  properties  published  for  cryogenic oxy- 
gen by  Stewart ( ref .  3) and  by Weber ( r e f .  4 )  satism the  accuracy  requirements.  

One complicat ion  that   occurs   in  the ana ly t i ca l   desc r ip t ion  of f l u i d  prop- 
er t ies  n e a r   t h e   c r i t i c a l   p o i n t  is t h a t   t h e   p r o p e r t i e s   r e q u i r e  two  independent 
var iables   with  both  var iables   showing  s t rong  nonl inear   behavior .   In   this  
respec t ,   the   re la t ive ly   s imple   descr ip t ions   such  as provided  by  van  der Waals' 
or Beattie-Bridgeman's  equations  of  state (see,  e .g .  , r e f .  5 o r  6 )  are not a t  
a l l  s a t i s f a c t o r y .   I n   f a c t ,   t h e   r e q u i r e d  s t a t e  equations  can  be  quite  compli- 
ca ted ,  as shown in  both  Stewart ' s   and Weber's  papers ( refs .  3 and 4 ) .  An addi- 
t i o n a l  problem that   occurs  wi th  such   re la t ions  i s  tha t   should  a d i f f e r e n t  
choice  of  independent  variables  be  required,  considerable  computer time can b e  
expended i n  t h e  application  of  conventional  inversion  methods.  

In   t he   d i scuss ion   t ha t   fo l lows ,   pa r t i cu la r  emphasis i s  placed on formulat- 
i n g   t h e  thermodynamic properties  of  cryogenic oxygen i n  such a manner t h a t  
f l e x i b l e  and  time-wise e f f ic ien t   eva lua t ions   a re   poss ib le .  By f l e x i b l e  it i s  
meant t ha t  an arbi t rary  choice  of   independent   var iables  i s  allowed. A minimiz- 
ation  of  redundant  ari thmetic  operations leads t o  an e f f i c i e n t  computer  program. 

It was found t h a t  a "modified v i r i a l "  representa t ion   of   S tewar t ' s  equa- 
t i o n s   l e a d s   t o   t h e  least computational  redundancy.  Finding  zeros  by means of 
success ive   l i nea r   i n t e rpo la t ions   ( r e f .  7 )  provides   the means for   ob ta in ing  
rapid  funct ion  inversions.  The thermal  equation  of state and t h e   c a l o r i c  equa- 
t i o n  of s t a t e  are p l o t t e d   i n   s e v e r a l   d i f f e r e n t  ways t o  demonstrate the f l e x i -  
b i l i ty   o f   the   p rocedures   descr ibed .  

A method i s  a l so   desc r ibed   t ha t  i s  pa r t i cu la r ly   va luab le  for t h e   r a p i d  
evaluation  of volume i n t e g r a l s  of thermodynamic spa t i a l ly   va ry ing   quan t i t i e s  
(e .g . ,   t empera ture)   where   the   in tegra ls   represent  volume averages. An impor- 
t a n t  concept   of   this  method i s  tha t   accuracy   can   be   t raded   to   ob ta in  computing 
speed.  Thus,   by  sacrificing  the  numerical   accuracy beyond t h a t   s p e c i f i e d  by 
the  semiempirical   formula,   one  obtains  significant  savings  in  computational 
time. The method i s  p a r t i c u l a r l y  w e l l  su i ted   for   cer ta in   c lasses   o f   numer ica l  
s imulat ion  s tudies ,   s ince  evaluat ion time i s  nearly  independent  of the  number 
of s p a t i a l  mesh p o i n t s .  

The author  wishes t o  acknowledge severa l   he lpfu l   conversa t ions   wi th   Prof .  
Richard B. Stewart,  Mechanical  Engineering  Department,  University  of  Idaho, 
Moscow, Idaho , and  with D r .  Loyd A.  Weber , Cryogenics  Division,  National 
Bureau of  Standards  Laboratory , Boulder,  Colorado. 
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THERMODYNAMTC QUANTITIES 

There are several accura te   representa t ions   for  the thermal  equation  of 
state for   cryogenic  oxygen. I n  one case ( re f .  4 ) ,  accurate  experimental 
r e s u l t s   i n   t a b u l a r  form are publ i shed   tha t  encompass a broad  range of values  of 
pressure  and  temperature (54.6O I T 5 300° K ;  1 5 p 5 330 atm). A value of a 
s ta te  variable, say   p ressure ,  cam be made available on an e l e c t r o n i c  computer 
by t h e  use of a table-lookup  and  interpolation  procedure  once the o t h e r   p a i r   o f  
va r i ab le s  , density  and  temperature,  are specif ied.   In   the  second  case ( r e f .  3 )  , 
t h e  state va r i ab le  i s  represented by a complicated  analyt ical   funct ion of two 
independent   var iables .   Specif icat ion  of   values   for   the two independent vari- 
ables and  evaluation  of  the  function are then   necessary   to   ob ta in  a va lue   for  
t h e  s ta te  va r i ab le .  

A purpose   o f   th i s  work i s  t o  design a f lexible   procedure  for   obtaining 
thermodynamic s ta te  va r i ab le s  A t ha t  i s ,  a procedure  that   a l lows  the  rapid 
determination  of  an arbitrary var iable   given any p a i r   o f   o t h e r   v a r i a b l e s .  To 
expedite t h i s  task,  it was decided t o  minimize  the  coding  problems  encountered 
by represent ing the  s ta te  equation as a complicated  analyt ical   re la t ion.  A s  a 
result  of  interpolation  problems,  table-lookup  procedures tha t  depend on two 
independent   var iables   of ten  are   inappl icable   to   general   usage.  For examDle, 
when de r iva t ives  of  thermodynamic q u a n t i t i e s  are required,   numerical   d i f feren-  
t i a t i o n   o f   t a b l e   q u a n t i t i e s  can r e s u l t   i n  an unacceptable  lack  of  smoothness. 
Although  one  can  develop  procedures t o  overcome t h e s e   d i f f i c u l t i e s ,   t h e y  are 
avoided  by the  use  of the  a n a l y t i c a l   r e l a t i o n .  

In   the   d i scuss ion  tha t  follows the analyt ical   representat ion  given  by 
Stewart   in   reference 3 i s  used. It w i l l  a l so   be  shown tha t  by  modiflying 
Stewar t ' s   o r ig ina l   formula t ion   to  one similar t o  the  v i r i a l   s t a t e   e q u a t i o n  
( see ,   e .g .  , r e f .  6) one  can significantly  reduce  computer  evaluation  t ime. 

One should  note that although  Stewart 's   formulation w a s  used, much of the 
content  of t h i s  chapter i s  o f  a general   nature and therefore  applies  indepen- 
dent ly  of  t h i s   p a r t i c u l a r   c h o i c e .  

Quant i t ies   Defined  Expl ic i t ly  

This sect ion  concerns  the  var ious thermodynamic q u a n t i t i e s   t h a t  are 
d e f i n e d   e x p l i c i t l y   i n  terms of  representations  containing  the  independent vari- 
ables. P a r t i c u l a r  emphasis i s  given to   formula t ions  of  t h e  s ta te  equations 
where  redundant  arithmetic  operations  are held t o  a minimum; hence,  evaluation 
time i s  also  minimal. 

The p a r t i c u l a r  s ta te  r e l a t i o n s   t o   b e   d i s c u s s e d  are t h e   a n a l y t i c a l  formula- 
t i o n   o f  the thermal equation  of state p = pa(T,p) , the  equivalent  "physical" 
representat ion p = + ( T , p ) ,  and the   ca lo r i c   equa t ion   o f  s ta te  e = U ( T , p ) .  

ThermaZ equation o.f state (anaZytica2  representation)-The  equation  of 
s ta te  tha t  results from  Stewart 's work i s  given  by 
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where 

+(nGT2 + n7T + n8 + % + - n;$3 

n28 - n2 8 v = p  ( 4 . l b )  

In   equat ions (4.1) p ,  T ,  and p are the   var iab les   represent ing   pressure ,  tem- 
perature  , and  density , respec t ive ly .  The symbol  pa(T , p )  denotes   the  r ight-  
hand  s ide  of   the   equat ion;   the  subscr ipt  c s i g n i f i e s   c r i t i c a l   p o i n t   v a l u e .  
The quant i ty  R i s  the   un ive r sa l  gas  constant.  Values for t h e   c o e f f i c i e n t s   i n  
t h e  above equat ion,   n l   through n28 , are l i s t e d   i n   t h e  f i r s t  column of t a b l e  4 .1 .  
Constants as wel l  as some convenient  conversion  factors are l i s t e d   i n   t a b l e  4.2.  
In   re fe rence  3, t h e   c o e f f i c i e n t s   n i  were determined  by  the  use  of a l e a s t -  
squares  procedure  applied t o  experimental   data   provided  largely  by D r .  L. A .  
Weber of  the  National  Bureau of Standards  Laboratory,  Boulder , Colorado. The 
measurements  have  since  been  improved  by  T7eber ( r e f .  4). Differences ’between 
t h e  la tes t  measurements  and the   quan t i t i e s  computed by  the  use  of  equation 
(4 .  l a )  are no t   s ign i f i can t  (of  order 0 . 1  percent)  except  in  the  neighborhood of 
t h e   c r i t i c a l   p o i n t  where the  density  deviates  by  about 2 percent.  The e r r o r  
for   p ressures  and  temperatures i s  l e s s   i n   t h i s   r e g i o n .  

Severa l   choices   for   the   n i   g iven   in   equa t ions  (4.1) a r e   l i s t e d   i n   t a b l e  
4.1;  t h e y   d i f f e r   o n l y   i n   u n i t s .   I n   t h e  f irst  two  columns o f   t he   t ab l e ,   quan t i -  
t i es  ni   are   given  both  with and  without a b a r ;   t h e  n i  with  bar  are t h e  
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i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

27 
26 

28 - 

-~ ~ . . -~ 

TABLE 4.1.- COEFFICIENTS FOR  STEWART'S THERMAL EQUATION OF  STATE 
(REF. 3) I N  DIFFERENT  UNITS _ ~ " _  - 

ni 
p,atm; p ,g-mole/l i ter;  T Y o K )  

-1.31606223D 00 

1.92049067D 07 
-2.90260005D 10 

7.96822375D-05 
6.07022502D-03 
-2.71019658D 00 
-3.59419602D 01 
1.02209557D-06 
1.90454505D-04 
1.21708394D-05 
2.44255945D-03 
1.73655508D 02 
3.01752841D 05 
-3.49528517D  07 
8.86724004D-01 
-2.67817667D 02 
1.05670904D 05 

-1.12012813D 00 
1.46829491D 02 
9.98868924~-04 

- "" 

3.38759078D-03 
" 

-7.38828523D  03 

-5.70101162~-08 

5.63771075D-03 

-5.60O00000D-O3 
-1.57000000D-01 
-3.50000000~-01 
9.00000000~-01 

n i  
: p  ,g-mole/cc; T , O K )  

4.12851466D 01 
-1.60390749~ 04 
-9.00422923D. 07 
2.34053474D 11 
-3.537448191,  14 

9.71101019D 02 
7.39788677D  04 
-3.30296280D 07 
-4.38030799D  08 
1.24564530D  04 
2.32110154D 06 
1.48328096D  08 
2.97678886~ 10 
2.11636930D 09 
3.67751334~ 12 
-4.25976365D  14 

-6.94792010~-01 

1.08066567~ 13 
-3.26393959D 15 
1.28782933D  18 
6.87077425D  16 
-1.36511926D  19 
1.78943605D 21 
3.05781529D 03 

-3.94366040~  04 
-5.60000000~ 03 

-3.50000000~-01 
9.00000000~-01 

[ni 1 4 
(dimensionless) 

5.50454716D-01 
-1.38172091D 00 
-3.23827743D-01 
3.51405940D-02 

-1.91160034D-02 
1.72631459D-01 

-2.45123930D-01 
-2.10038991D-02 
2.9524169711-02 
3.55459957D-02 
3.02864054D-02 
3.92722326D-02 
1.01481465D-01 
1.13936476D 00 
-8.52721624D-01 
9.21175040D-02 
-1.79765426D-01 
4.58284972D-01 
1.04114692D-01 
-1.3365653OD-01 
1.13200675~-01 
8.32903264D-03 
-9.95505258D-01 
-1.66253033~ 01 
-1.46114912D-05 

-2.21722921D-03 

8.49721211~-02 

9.00000000~-01 
Note: The las t  four   d ig i t s   beginning   wi th  D are representa t ions   for   the  

exponent;  for  example, 9.OOOOOOOOD-01 can a l so   be   wr i t t en  9~lO-~. 

TABLE 4.2.- CONSTANTS AND CONVERSION FACTORS 

R (Universal  Gas Constant) = 0.0820535 liter-atm/g-mole O K  

Cr i t ica l   po in t   va lues  f o r  molecular oxygen ( r e f .  3): 
pc = 50.14 a t m  
T, = 154.77O K 
pc  = 13.333 g-mole/l i ter  
e, = 742.2 J/g-mole 

1 g-mole 0 2  = 31.9988 g ( C I 2  = 12.000 s c a l e )  
1 liter-atm = 101.3278 J ' (abs . )  = 24.2179 c a l  = 0.0960417 Btu 
1 a t m  = 1.01325~10~ N/m2 = 1.01325~10~ dyne/cm2 = 14.696006 lb(wt)/sq i n .  

Conversion  factors:  



v a l u e s   l i s t e d  by  Stewart i n  h i s   t h e s i s   ( r e f .  3 )  , and  those  without a b a r .   a r e   t o  
be  used  with  the  equat ions  to   be  introduFed  here .   These  quant i t ies   (except  
1125 through  n28)  differ  by a f a c t o r   t h a t  i s  t h e  universal gas  constant.  
Stewart ' s  units fo r   p re s su re ,   dens i ty ,  and temperature were atmospheres, 
g-mole/l i ter  , and  degree  Kelvin , r e spec t ive ly   ( i n  Weber's  paper, ref. 4 ,  t h e  
corresponding  choice i s  MPJ/m2 , g-mole/cm3 , and  degree  Kelvin). The coeff i -  
c ients   without  a bar   have  uni ts  ( n i )  simply  expressed as t h e   r a t i o   o f  powers  of 
densi ty   and  temperature   ( in   Stewart ' s  units) as indica ted   by   the  symbols p 
and T l i s t e d  on the   r i gh t   o f   t he   unba r red   quan t i t i e s  i n  t a b l e  4.1. The  con- 
vers ion  factors   required  for   t ransformation  of   these  constants  are l i s t e d  i n  
tab le   4 .2 .   In   the  last column of   t ab le  4 . 1  t he   coe f f i c i en t s  , denoted as ny , 
a r e  made d imens ionless   by   appropr ia te   ra t ios   o f   the   c r i t i ca l   po in t   va lues  Tc 
and pc .  The dimensionless  thermal  equation  of  state  that  results can  be  use- 
fu l   a l so   for   the   approximate   eva lua t ion   of   s ta te   p roper t ies   o f   o ther   nonpolar  
molecules  (such as N 2 ,  A , Xe , H2) by  introducing  the  "pr inciple  of correspond- 
i n g   s t a t e s "   ( r e f .  6, p.  235).  

The analyt ical   formulat ion , equation ( 4 . 1 )  , i s  fairly  complicated  and i s  
n o t   i n   t h e  most e f f ic ien t   format   for   f requent   eva lua t ion   by  an e l ec t ron ic  com- 
puter .  More use fu l  i s  the  modif ied  vir ia l   formulat ion '   g iven  by 

Most conven t iona l   s t a t e   r e l a t ions  can  be  cast   in  this  form (see ,   e .g .  , ch. 3 
and 4 ,  r e f .  6 ,  and r e f .  8 ) .  Although it can  be  argued  that   equation (4 .2 )  rep- 
resents  only a t r iv ia l   re formula t ion   of   equa t ion  (4.1) , it w i l l  become evident 
that  worthwhile   advantages  are   real ized  by  capi ta l iz in  on cer ta in   fea tures   o f  
the   modi f ied   v i r ia l   formula t ion .  The quan t i t i e s  A i ( '  Y ( T )  a n d   g i ( ' ) ( p )   a r e  
d e f i n e d   i n   t h e   f i r s t  columns of  tables  4.3  and 4.4.  The v i r i a l   c o e f f i c i e n t s ,  
t he   coe f f i c i en t s   r e su l t i ng  from a power ser ies   expansion  in   densi ty   of   the  com- 
p r e s s i b i l i t y   f a c t o r  Z defined  above,  are  readily  found  (ref.  6 ,  p .  131 eq. 
(3.0-1) ) and are  given  by  the  following  l inear  combinations  of  the Ai( 
a u a n t i t i e s .  

'Hust  and Gosman ( r e f .  9 ,  p.  231) have   d i scussed   the   c r i te r ion   requi red  of 
a rea l - f lu id   thermal   equa t ion   of   s ta te   to   ensure   nons ingular   s ta te   behavior  as 
the  ideal-gas l i m i t  of  very low dens i t i e s  i s  reached. The the rma l   s t a t e  equa- 
t i o n s   t h a t  can  be p l aced   i n   t he   mod i f i ed   v i r i a l  form  always sat ism t h e i r  
s ta ted   c r i te r ion   provided   tha t   the   func t ions   g i (n)  ( p )  a r e  bounded as t h e  den- 
s i t y  becomes in f in i t e s ima l ly  small. 
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TABLE  4.3.-  TEMPERATURE-DEPENDENT  COEFFICIENTS  REQUIRED 
FOR STEWART’S  REPRESENTATIONS 

- - 

i 
- 

1 

2 

3 

4 

5 

6 

7 

8 

- 
TABLE 4.4.- DENSITY-DEPENDENT  COEFFICIENTS  REQUIRED 

FOR STEWART’S  REPRESENTATIONS 

Note: u = p 1125; v = p 2 n28  n28 - P, 



When the   s t a t e   equa t ion  i s  expressed  in   the  modif ied v i r ia l  form, approxima- 
t i o n s   a r e   r e a d i l y   i n t r o d u c e d   t h a t  can l e a d   t o   s i m p l i f i c a t i o n s   ( e . g .  , f o r  suf- 
f i c i e n t l y  small d e n s i t i e s  , say p < Jl10-5/n,5 I , only  the  lowest   order  v i r ia l  
term  need  be  considered). 

A more important   aspect   of   the   formulat ion i s  t h a t   t h e   v a r i a b l e  dependence 
i s  separated.  That i s ,  the  temperature-dependent  quantit ies  are  evaluated  sep- 
a r a t e l y  from those  that   are   densi ty   dependent .  Use of  t h i s   f e a t u r e  saves con- 
siderable  computational  t ime. For example, i n   t h e   c a s e  where pressure  and 
temperature   are   given  and  the  densi ty   ( implici t ly   def ined)  i s  t o   b e  found, as 
d iscussed   in  a l a t e r   s e c t i o n ,   t h e   r e q u i r e d  computer t ime i s  grea t ly   abbrevia ted  
i f   the   t empera ture   quant i t ies   a re   eva lua ted   on ly   once .   Fur ther ,   s ince   the  

coe f f i c i en t s  A l 1 ) ( T )  are  polynomials  in  temperature,  it t u r n s   o u t   t h a t  by 
separately  evaluat ing  and  s tor ing  the  individual   terms  ( in   parenthesis   in  
t a b l e  4 . 3 ) ,  one can use   the  same quant i t ies   during  the  subsequent   evaluat ion of 
o the r  thermodynamic q u a n t i t i e s .  For a given  densi ty  and temperature,  once t h e  
thermal   equa t ion   of   s ta te  i s  e v a l u a t e d   r e l a t i v e l y   l i t t l e   a d d i t i o n a l  computer 
time i s  r equ i r ed   t o   eva lua te   t he   o the r  thermodynamic proper t ies   ob ta ined  by 
d i f f e r e n t i a t i o n  or i n t eg ra t ion   o f   t he   t he rma l   equa t ion   o f   s t a t e   ( i n t e rna l  
energy,   enthalpy,   specif ic   heat ,   and  entropy) .  The s ign i f i cance  of t hese  com- 
ments w i l l  be   pa r t i cu la r ly   ev iden t   i n   t he   d i scuss ion   t ha t   fo l lows .  

Thermal equation o f  s t a t e  (physical  representation)--The  relation p a ( T , p )  
as defined iil the   previous  sect ion i s  mult ivalued  in   terms  of   the  densi ty   var i -  
able  p ( f i g .  b . l ( a ) ) .  Such mul t ip l ic i ty ,   o f   course ,  i s  not   phys ica l ly   rea l i s -  
t i c .  It i s  therefore   convenient   to   def ine  a new funct ion p = p p ( T ,  p) t h a t  i s  
single  valued,  al though  discontinuous,   and i s  a phys ica l   representa t ion .  We 
de f ine   t h i s   func t ion  as 

T < Tc and ( 4 . 4 )  

where pv(T) i s  the  vapor   pressure  equat ion  la ter   def ined by equation (4 .9 )  , 
p s v ( T )  i s  the  density  corresponding.to  the  saturated  vapor  boundary,  and 
p s ~ ( T )  i s  the  densi ty   corresponding  to   the  saturated  l iquid  boundary.  The pro- 
cedure tha t   l eads   t o   t he   eva lua t ion   o f   t hese   quan t i t i e s  i s  d iscussed   in  a l a t e r  
sec t ion .  Note- that   a l though g ( T , p )  i s  i d e n t i c a l   t o   p a ( T , p )   a h o s t  every- 
where, it i s  not  convenient t o  code both   these   quant i t ies  as the  same subpro- 
gram. The r eason   l i e s   i n   t he   f ac t   t ha t   pa (T  ,p)  i s  requi red   in   the   eva lua t ion  
of   the   impl ic i t ly   def ined   boundaq  quant i t ies  psv and PSL conta ined   in  
g ( T , p ) .  

Caloric equation of state-Once  the  thermal  equation of s t a t e  and an 
expression  for  low-density  specific  heat are given, an equa t ion   fo r   t he   i n t e r -  
nal   energy can be   der ived   tha t  i s  v a l i d   f o r  a l l  temperatures above c r i t i c a l  and 



for temperatures  below c r i t i c a l   p r o v i d e d   t h a t   t h e  computed pressures  do not 
exceed  the  vapor  pressure pv(T)  (or t he   spec i f i ed   dens i ty  i s  always less than  
the  saturated-vapor   densi ty  p s ~ ( T ) ) .  Introduction  of  the  Clausius-Clapeyron 
equation allows one t o  genera l ize   the   energy   equat ion   to   inc lude  also t h e  low- 
temperature,   high-density (i  .e . ,   h igh   pressure  p 1 p,(T) ) cryogenic  region. 
The derivation  procedure w i l l  not  be  discussed  here (see, e .g . ,  Hust  and 
Gosman, r e f .  9 ) .  The emphasis  here i s  on the  presentation  of  optimal  formula- 
t i ons   o f   t he  thermodynamic q u a n t i t i e s   t h a t   l e a d   t o   t h e i r   e f f i c i e n t  computer 
evaluat  i on. 

The ca lo r i c   equa t ion   fo r   i n t e rna l   ene rgy   ( s ee ,   e .g . ,   r e f .  9 )  with  terms t o  
account  for  energy  changes  in  the two-phase region i s  given  by 

+ T d P I k T I } ,  T < Tc 

(4 .5b)  

where the   cons tan t  U ( T o , O )  = $, - RT, = 1133.655  J/g-mole (€LJ, = 1590.929 

J/g-mole  and To = 55' K) i s  t h e  low-density or ideal  gas  reference  energy  for 
oxygen. The quan t i ty   S (x )  i s  the  symmetrical   Heaviside  unit   step  function, 
which i s  uni ty  or zero  depending on whether  the argument x i s  g r e a t e r   o r   l e s s  
than   zero ,   respec t ive ly ,  and  has  value  1/2 when t h e  argument i s  zero.  The 
e n e r a   q u a n t i t y  U ( T , p )  i s  obtained  by  evaluat ion  of   the  indefini te   isothermal  
i n t e g r a l  

0 

The i d e a l  gas (or low dens i ty )  constant-volume s p e c i f i c   h e a t  and i t s  i n d e f i n i t e  
i n t e g r a l  Uo( T )  (needed  in  eq. ( 4 . 5 )  ) are  given  by 
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The coe f f i c i en t s  CE/R are l i s t e d  for oxygen i n   t h e  f irst  column o f   t a b l e  4.5. 
Note a l s o   t h a t   t h e   t h i r d  term of  the  second  equation  has  been removed  from t h e  
summation s ign.  

Equation (4 .5)  a l so   r equ i r e s   t he   vapor  pressure equation and i t s  
de r iva t ive  as given  by 

7 

Rn pv(T) = a. + (aRT)’ 
R= 1 

The coe f f i c i en t s  aR are l i s t e d   i n   t h e   s e c o n d  column of table 4.5. 

TABLE 4.5.- DIMENSIONLESS  COEFFICIENTS  FOR THE LOW-DENSITY 
SPECIFIC HEAT RELATIONS (EQS. (4.7) AND (4.8) ) AND FOR 
THE VAPOR  PRESSURE RELATIONS (EQS . ( 4.9 ) AND ( 4.10 ) ) FOR 
OXYGEN 

I R  c g  /R 

1 -1.86442361~ 02 
2 

-3.42642911D-01 3 
2.07840241D 01 

2.23918105D 03 9 
1.01894691~ 00 8 
2.08612876D-11 7 
-1.11035799~-08 6 
2.05866482D-07 5 
3.50297163D 00 4 

“R 
-6.2596718511 01 
2.47450429D 00 
-4.68973315D-02 
5.48202337D-04 
-4.09349868D-06 
1.91471914D-08 
-5.1311368813-11 
6.02656934~-14 

The f i n a l   q u a n t i t i e s  are the  temperature-dependent  saturation  densit ies 
psV(T) and pSL(T) described ear l ie r .  

The calor ic   equat ions (4.5) are ac tua l ly  more general   than  the  representa-  
t ion   g iven  by Hust and Gosman ( r e f .  9, eq. (43)). Here the  equat ion i s  gener- 
a l i zed   t o   accoun t   fo r   t he  changes in   i n t e rna l   ene rgy   i n   t he  two-phase  region 
due t o   t h e  work  done as isothermal  changes  in volume occur ( i . e . ,  the   reg ion  
T Tc and psv 5 p 5 psL).  The f ac to r  

was introduced  to   take  account   of   these  effects .   Because  of   the  coeff ic ient  
s tep   func t ion  S ( p  - p s v ) ,  the   cur ley  bracket   expression makes no contr ibut ion 

5 1.91 



t o   t h e   i n t e r n a l   e n e r g y   f o r   d e n s i t i e s  less than   the   va lue  on the  vapor  boundary 
p s v ( T ) .  For dens i t ies   l a rger   than   tha t   o f   the   sa tura ted   vapor   the   b racke t   fac-  
t o r   i nc reases  i n  value as t h e   r a t i o   o f   s p e c i f i c  volume differences  given  by 

Equation (4 .11)  increases   vary ing   l inear ly   wi th  volume u n t i l   t h e   s a t u r a t e d -  
l iquid  boundary i s  reached. The bracket   expression.has   the  value  uni ty   for  a l l  
values   of   densi ty   in  the  l i qu id   r eg ion  p -> PSL. The coef f ic ien t   o f   the   t e rm 
U ( T , p )  in   equa t ion   (4 .5b)  i s  nonzero  only  outside  the two-phase region.  Aside 
from the   d i f f e rences   i n   no ta t ion ,   t he   ca lo r i c   equa t ion   g ives   t he  same r e s u l t s  
as that  given  by  Hust  and Gosman everywhere  outside  the  two-phase  region. 

The Heaviside  symmetrical   unit   step  function was in t roduced   t o  minimize 
t h e  number of  regions to  be  considered  by  separate  energy  equations.  When t h e  
energy  equations  are  coded  for  electronic  computer  evaluation,  however,  the 
uni t   s tep   func t ion  i s  most conveniently  represented by use   o f   log ica l   s ta te -  
ments i n  such a manner that  the   respec t ive   coef f ic ien t   quant i t ies   a re   eva lua ted  
only when the   s t ep   func t ion  i s  not  zero (i . e .  has pos i t i ve  arguments ) . 

The quan t i ty   i n   t he  calor ic   equat ion tha t  depends e x p l i c i t l y  on the   ther -  
m a l  equa t ion   of   s ta te  i s  U ( T , p )  as defined  by  equation ( 4 . 6 ) .  It i s  worth- 

* whi le   to   ob ta in  an expres s ion   fo r   t h i s   quan t i ty   t ha t  depends  only on the  coef- 
f ic ien ts   conta ined   wi th in   the   modi f ied   v i r ia l   equa t ion   of   s ta te .  We f i r s t  
wr i te   the   express ion   for  the thermodynamic der ivat ive  (ap/aT) . We f ind  

P 

where 

The coe f f i c i en t s  T A i l ) ’ ( T )  contained  in  equation  (4.13a)  (prime  denotes  dif-  
f e r e n t i a t i o n )   a r e   l i s t e d   i n   t h e   s e c o n d  column of t a b l e  4.3. Note that  these  
coeff ic ients   contain  terms t h a t  d i f f e r   by   i n t ege r   f ac to r s  from t h e  terms con- 
ta ined  in   the  thermal   equat ion  of  state l i s t e d   i n   t h e  first column (except   the 
e igh th   coe f f i c i en t ) .  Hence l i t t l e   a d d i t i o n a l  computer  time  need  be  expended 
provided  the  calor ic   and  thermal   equat ions  of   s ta te   are   both  evaluated  together  
A similar comment appl ies   to   the   eva lua t ion   of   the   vapor   p ressure   equat ion   and  
i t s  assoc ia ted   der iva t ive ,  as w e l l  as the  low-densi ty   specif ic   heat  and i t s  
a s soc ia t ed   i nde f in i t e   i n t eg ra l .  The inde f in i t e   i n t eg ra l ,   equa t ion  (4.61, can 
now be   eva lua ted ,   w i th   t he   r e su l t  
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where 

The quan t i t i e s   g i2 ) (p )   a r e   de f ined   i n   t he   s econd  column o f   t ab l e  4.4. Note 

tha t   bo th   coe f f i c i en t s  A i  and g i 2 )  have  been  defined  such  that   their   respec- 
t ive   p roducts   a re   a l so   d imens ionless .   This   tu rns   ou t   to   be   par t icu lar ly  
advantageous when units conversion i s  required.  

( 2  1 

Quantit ies  Defined  Implicit ly 

Of'ten a choice  of  independent  variables  other  than  density  and  temperature 
( e .g .  ; pressure and  temperature or energy  and  density) would be more advanta- 
geous.   Since  the  state  equations are suff ic ient ly   complicated  to   preclude  the 
exis tence  of   expl ic i t   re la t ions  with  the  desired  var iable   dependence,  one has 
t o   r e s o r t   t o  numerical  evaluation. A procedure i s  descr ibed  here   for   " invert-  
ing"  the thermal equa t ion   o f   s t a t e   t o   ob ta in ,  i n  e f f e c t  , t h e   s t a t e   r e l a t i o n  
p = p(p,T).  Extension  of  the  procedure to  obtain  analogous  equations  with 
s t i l l  d i f f e ren t   va r i ab le  dependence i s  s t ra ightforward and i s  not  discussed 
here.  

Density i s  obtained as a function  of  pressure.  and temperature by solving 
for   the  zeros   of   the   equat ion 

This  equation i s  r ead i ly   so lved   fo r  a l l  values  of  pressure and temperature, 
except   that  an addi t iona l   compl ica t ion   resu l t s   in   the   case  where temperatures 
below c r i t i c a l   a r e   s p e c i f i e d .  The "successive  l inear   interpolat ion  procedure ' '  
descr ibed  in   reference 7 was found s a t i s f a c t o r y   f o r   f i n d i n g   t h e   r o o t s   o f  equa- 
t i o n  (4.161, p a r t i c u l a r l y   s i n c e  it requires   only  that   the   lower and  upper 
bounds of the  roots   be  specif ied.  The procedure  converges  quite  rapidly;  in 
general ,   fewer  than  eight  separate  evaluations  of f ( p )  , or " i t e r a t i o n s  ,I' a re  
r equ i r ed   t o   ob ta in  a value  of  the  root.  For spec i f ied   t empera tures   g rea te r  
than   c r i t i ca l   the   roo t   o f   equa t ion  (4.16) l i e s   i n   t h e   i n t e r v a l  0 I p I 0.042 
g-mole-cm3. The constants  that   represent  the  interval  boundaries  were  found by 
searching  the  tables   given by  Stewart   (ref.  3) t o   f i n d   t h e  maximum and minimum 
values  of  the  density.  

I n  the  case  that   temperatures below c r i t i c a l  are spec i f ied ,  f ( p )  has  zero 
va lue   for   th ree   d i s t inc t   va lues   o f   dens i ty .  The root-finding  procedure  then 
requires   isolat ion  of   the  three  branches of the  multivalued  function  pa(T,p) 
f o r  T < T,. Figure 4.1(a) shows the  mult ivalued  character   of   pressure  plot ted 
as a flmction of densi ty .  The various  curves  pictured  are  isotherms. The 
en t i re   reg ion  above t h e   c r i t i c a l   i s o t h e r m  i s  the  region where the   dens i ty  
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where 

Th i s   r e l a t ion  i s  readi ly   found by observ ing   tha t  it represents  a s t r a i g h t   l i n e  
on a log-log  graph  between the  p a i r  of points   having  coordinates  ( p 1 , p l )  and 
(pc ,pc) .  The l i n e   p ~ ( p ) ,   a l t h o u g h  somewhat a rb i t r a r i l y   de f ined ,  i s  a simple 
representat ion tha t  can  be  rapidly  evaluated  numerically.  

The two-phase  branch i s  bounded  on the l e f t  by t h e   l i n e  p B ( p )  and on t h e  
r igh t   by   the   th ree   ver t ica l   segments  p = p c ,  150' 5 T 5 Tc;  p = 0.02, 
120' I T I 150° ; and p = 0.03, T < 120' K .  I n   t h i s   r e g i o n ,   p r e s s u r e s  computed 
from the  equation  pa(T,P) do not  agree  with  experimental   data;   hence,  t h i s  
region i s  ignored   i n   t he   i t e r a t ion   p rocedure .   In   f ac t ,   t he   p re s su re  depends 
only on tempera ture   in  the two-phase region and t h e r e f o r e  i s  independent  of 
dens i ty .   F ina l ly ,   the   l iqu id   b ranch  i s  i s o l a t e d  by  observing  that  it i s  
bounded  by the  three-segment   curve,   the   cr i t ical   i sotherm  and  the  a l ready  spec-  
i f i e d  la rges t   dens i ty   va lue  pmx = 0.042 g-mole/cm3. I n   t h i s   r e g i o n ,  the 
pressure i s  character ized as having  values t ha t  exceed  the  vapor  pressure 
% ( T I .  

The root-finding  procedure  converges most r a p i d l y   f o r  bounds that  most 
c lose ly   sur round  the   va lue   o f   the   roo t .  The values  given  above are somewhat 
arbitrary, and  one  can,  perhaps  introduce  even  better  bounds.   Those  specified 
above,  however, were found  sa t i s fac tory .  If, as recommended earlier , t h e  

A i l ) ( T )  quan t i t i e s   ( eq .  ( 4 . 2 ) )  are reevaluated  only when the temperatures are 

d i f f e r e n t  ( a  similar comment app l i e s   fo r   t he  91') ( p )  r e l a t i o n s ) ,   t h e n ,  
a l t h o u g h   a b o u t   s i x   t o   e i g h t   i t e r a t i o n s   a r e   r e q u i r e d   t o   f i n d  p ( p  ,T) t h e   a c t u a l  
computer time expended i s  only a f a c t o r  of  two or t h ree   g rea t e r   t han  t h e  long- 
es t  evaluation time r e q u i r e d   t o   f i n d   p a ( T y p )  ( i . e . ¶  t h e  t i m e  required when 
both p and T have  values tha t  are d i f f e r e n t  when compared t o  a previous 
eva lua t ion ) .  
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For the  reader's  convenience  the  diagram  below shows a logical  sequence of 
ope ra t ions   t ha t   l eads   d i r ec t ly   t o   t he   ca t egor i za t ion  of  a specified  combination 
o f  t he   va r i ab le s  p and T . i n t o  a par t icu lar   b ranch .  The rounded  blocks 
l a b e l e d f ( p ) ( e q .  (4.16)) denote  the  root-finding  procedure  described  in  refer-  
ence 7 with  appropriate  bounds as spec i f ied .  

P=P(R.T) 

p,T Specified 

? Q  
P =PsJ T ) 

PJTL 
T specifred T specified 

6 Return 

Flow chart that shows the sequence of operations 
required to evaluate  density p(pT) as well as the 
saturation densities  psv(T) and pSL(T). 

By s l i g h t l y   a l t e r i n g   t h e  proce- 
dure  just   descr ibed one  can also 
ob ta in   t he   s a tu ra t ion   dens i t i e s  
p s V ( T )  and p s ~ ( T ) .  A s  commented ear- 
l i e r ,  these   quant i t ies   a re   the   exac t  
boundaries  of  the two-phase region. 
Spec i f i ca l ly ,   t hese   quan t i t i e s   a r e   t he  
outer  two  of   the  three  roots   that  sat- 
isfy f ( p  ) = 0 , T < Tc where t h e  
spec i f i ed   p re s su re  i s  t h a t  computed 
from the  vapor-pressure  equation 
p = w(T). We have  been  concerned 
with  the  removal  of  the  multivalued 
character  of  pa(T,p) s o  t h a t  p ( p , T )  
can be  evaluated  unambiguously. It 
turns   out   that   special   a l lowance must 
be made f o r   t h e  computation  of  the 
sa tu ra t ion   dens i t i e s .   Th i s  i s  indi-  
cated on the  f low  char t  by  two spec ia l  
en t ry   loca t ions   ( the  small c i r c l e s  
denoted  separately as pSV(T) and 
p s ~ ( T ) )  a t  which poin t  p = m(T) and 
T a re   spec i f i ed .  By th is   p rocedure ,  
t h e   s a t u r a t i o n   d e n s i t i e s  can be  accu- 
r a t e l y  computed f o r  a l l  temperatures 

less   than  about  150° K.  For temperatures   larger   than  this   value  but   less   than 
T, t h e   s a t u r a t i o n - d e n s i t y   c u r v e s   ( f i g .   b . l ( b ) )   v a r y   l i t t l e   w i t h  changes i n  
density;   therefore  accurate  numerical   evaluation i s  d i f f i c u l t .  For t h e  temper- 
a tures  150 s T 5 T,, t h e s e   q u a n t i t i e s   a r e   s p e c i f i e d   e x p l i c i t l y ,  a procedure 
t h a t  w a s  a l so  found  necessary  by Weber ( r e f .  4). The present  procedure  devi- 
a t e s  from t h a t   o f  Weber i n  t ha t   t o   ma in ta in   i n t e rna l   cons i s t ency ,   spec ia l  
t a b l e s  , wi th   r e l a t ive ly  few numbers of  elements , were  generated by smoothing 
t h e  psV(T) and p s ~ ( T ) -  appropriately  obtained from solutions  of  equation (4.16)  
( t h e  uppermost  value  of  density  in  both  tables i s  p r e c i s e l y   t h e   c r i t i c a l   v a l u e  
p , ) .  A table- lookup  procedure  with  l inear   interpolat ion was then  used t o   f i n d  
such  values   of   the   saturat ion  densi t ies .  

Quant i t ies  Based on S p a t i a l l y  Dependent  Variables 

When a system i s  no t   i n  thermodynamic equi l ibr ium  (see , e . g . ,   r e f .  1 0  , p .  
60) much ins igh t  on i t s  proper t ies  can be  gained  by  the  calculat ion  of   cer ta in  
thermodynamic averages,  such as density  and  energy. The f i n a l   s t a t e  can of ten 
be  predicted i f  some property  of  the  system  (say,  energy) i s  conserved  while 
re laxat ion  to   equi l ibr ium  occurs .  I n  t h i s   s e c t i o n  we introduce a method 



whereby  one  can r a p i d l y   p r e d i c t   t h e   f i n a l  s ta te  of a s t r a t i f i e d   f l u i d   s h o u l d  
t h e   f l u i d   b e   s u b j e c t e d   t o  some mechanism t h a t  results i n  complete  and  adiabatic 
mixing.  Since  the  procedure  requires that evaluations  be done numerically, 
variables  (and  summations)  defined at discrete   points   ra ther   than  cont inuous 
var iables   (and  integrat ions)  w i l l  be  considered. Also, since  considerable 
amounts of  computer time can be expended in   t he   eva lua t ion   o f   t he  thermodynamic 
r e l a t ions   ove r  a f i e l d   o f  many p o i n t s ,   p a r t i c u l a r  emphasis i s  l a i d  on t h e  
development  of a procedure  that  minimizes  redundant  arithmetic  operations and 
i s  t h e r e f o r e   r e l a t i v e l y   e f f i c i e n t .  

The problem  described  above  can  be  briefly  outl ined as follows. One first 
f i n d s  t he   quan t i t i e s  

(4.18) 

by the  use  of   procedures   descr ibed  ear l ier .  The notat ion shows r e s u l t s  on the  
left-hand  side  of  the  equation tha t  a r e  found  from  the  function  evaluations 
designated on the  r ight-hand  s ide.  The pressure p and the  temperature 
T(x,y)  are  considered known.  The t o t a l  mass M and the   t o t a l   ene rgy  E a re  
found  next by eva lua t ing   the   in tegra ls  

E = J pe av = G v  
V T T 

(4.20) 

(4.21) 

over   the  ent i re   tank volume. Introduction  of  the volume averages p and 
f o r   t h e  mass and energy  densi t ies  as defined  above iv, i s  t h e   t o t a l   t a n k  
volume) then  allows one t o  f i n d  

- 

The temperature i s  found  by  invert ing  the  calor ic   equat ion  of   s ta te  (4 .19) .  
The results denoted by the  symbols Tcol  and pcol   are   the  temperature  and 
p r e s s u r e   t o  which the  system would ' 'collapse" and that   uniquely  character ize  
the   un i form  f ina l   s ta te   o f   the  oxygen contained  within  the  tank.  During a 
s p a c e   f l i g h t ,  p remains  constant  unless  f luid i s  drawn from the   t ank .  If 
severe   thermal   s t ra t i f ica t ion   occurs  , mixing  (by  vehicle  maneuvers,  for exam- 
p l e )  can br ing  about   large  abrupt   pressure  decreases   (see  f ig .   k . l (c)  and d is -  
cussion)   that   could  conceivably  lead  to   spacecraf t  equipment f a i l u r e s .  These 
concepts  are  not new, however,  and are   discussed  e lsewhere  ( ref .  2 and  ch. 6 ) .  

- 
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The evaluat ion  of   equat ions (4.18) and (4.19) i s  p a r t i c u l a r l y  time consum- 
ing .  The matrix 

T = T ( j  Ax, k Ay) 
j k  

(4.24) 
where 

x = j A x ,  11jsJM 

y = k A y ,  I s k s K M  

can  contain many elements.  Furthermore, it can  occur tha t   the   t empera ture  
f i e ld   desc r ibes   s i t ua t ions  where many volume elements  are at temperatures  dif-  
f e r en t  from that  of  the  uniform  surrounding  gas.  Once the   dens i ty  and  energy, 
equations (4.18) and (4 .19) ,  are evaluated,  we could   e f f ic ien t ly   eva lua te   the  
i n t e g r a l s  , equations  (4.20)  and  (4.21) , i f  l ike  temperatures  were grouped 
toge ther .  However , w e  must cons ide r   t ha t   t he  Tjk a r e  randomly  mixed  and l i k e  
temperatures are not   ordered  in  any systematic manner. It a lso  appears  waste- 
f u l   t o   r e c a l c u l a t e   v a l u e s   f o r ,   s a y ,   d e n s i t y  and  energy when d i f f e rences   r e su l t  
t ha t   a r e   no t   numer i ca l ly   s ign i f i can t   ( e .g .  , l e s s   t h a n  0 . 1  pe rcen t ) .   I n   t he  
interest   of   minimizing  the number of  separate  evaluations  of thermodynamic 
funct ions a procedure i s  to  be  described  whereby, i n  essence,  one f irst  counts 
t h e  number of   t imes   tha t  a par t icular   temperature   appears   in   the  array 

a p p l i e s   s t r i c t l y   t o  an equally  spaced  Cartesian  coordinate  system.  In non- 
Cartesian  systems,  however,   additional  complexity  results.  The ana ly t i ca l  
foundat ion  for   the  temperature   dis t r ibut ion  funct ion i s  e s t a b l i s h e d   i n   t h e  
discussion  that   fol lows.  

I n   t h i s  manner a " temperature   dis t r ibut ion  funct ion" i s  then  constructed 

We f i r s t   d e f i n e  a dimensionless  temperature 

T = Ao(T - Tmin 1 

or, i n   t h e   c a s e   t h a t   t h e   s p a t i a l  dependence i s  d i s c r e t e ,  

where A, and Tmin a re   bo th   cons tan ts ;   the   va lue   o f  A, i s  a r b i t r a r y  and 
Tmin i s  the  very  lowest bound of a l l  possible  temperature  values T (or T j k ) .  
A temperature   dis t r ibut ion  funct ion F ( T )  i s  now defined  such  that  F(-r)dT 
i s  p r o p o r t i o n a l   t o   t h e  volume of a gas  with  dimensionless  temperature  between 
T and T + d-r. Then 

F ( T )  = C 6 ( ?  - -c)d? 
T 

(4.26) 

where C i s  an a rb i t r a ry   cons t an t   s e t   equa l   t o   un i ty ;   t he   cons t an t  can  be  used 
t o  normal ize   the   d i s t r ibu t ion   func t ion   in   such  a manner t h a t  i t s  in t eg ra l   ove r  
a l l  possible  temperatures i s  uni ty .  The funct ion 6 (; - T) i s  the  Dirac 6 
function  defined  such  that  



equals unity provided 5 ? I ~2 and  equals  zero i f  ? i s  no t   w i th in   t he  
in t eg ra t ion  interval .  

If t h e  volume elements are d i s c r e t i z e d ,  w e  have 

- - mfm 6(T - T )dTW 
j ,k=l j k   j k  

where S denotes  the  symmetrical   Heaviside  step  function  described ear l ie r ;  
Wjk = Av- N /VT i s  a "weighting"  function; Av i s  t h e  gas volume associated 
wl th   t he   d i sc re t e  volume element   of   the   cel l   labeled j ,k;  N t  corresponds t o  
t h e   t o t a l  number of volume centered  computat ional   gr id   points ;  and VT a l ready 

defined, is  the   t ank  volume. It fo l lows   tha t  when C = 1, j:kWjk = Nt . To 
fu r the r   c l a r i f ' y   t he  meaning of   the  weight ing  funct ion  w$k,) i f  a l l  Av were 
equal   (such  that  we have  an  equally  spaced  Cartesian  sys em , t h e  WjkSkwould 
then a l l  b e   u n i t y ;   t h a t  i s ,  VT/Avjk = 

Jk t j k  

NT 

We now seek a discret ized  vers ion  of  F ( T ) .  A s imp le   poss ib i l i t y  i s  t o  
define a function 

N+ 2 1 JM KM 

FN - = F(T)d-r = 2 k ( ~ ~ ~  - N + - 2 I) - S ( T ~ ~  - N - L)-)W (4.28) 
N- 2 j ,k=l 2 j k  

Then FN i s  the  weighted number of  computational  grid  points  with  dimension- 
less temperature  between N - 1 / 2  and N + 1/2. The mean dimensionless  tempera- 
t u r e  T w i t h i n   t h i s   i n t e r v a l  i s  N ( an   i n t ege r ) .  How one  can evaluate  
rap id ly   wi th  a computer i s  explained later.  Other  thermodynamic var iables   such 
as the  associated  dimensional  temperature TN, densi ty  p ~ ,  and  energy eN can 
be   eva lua ted   acco rd ing   t o   t he   r e l a t ions  



It w i l l  be shown t h a t  fewer evaluations of these   quan t i t i e s   ove r   t he   en t i r e  
grid  occur  than i f  a procedure i s  followed  whereby  the Tjk are   used  direct ly .  

Consistent  with our d e f i n i t i o n  for t he   d i s t r ibu t ion   func t ion ,   equa t ion  
(4.26) ,  it can be shown t h a t ,   i n   g e n e r a l  , t h e  volume average  of a thermodpmmic 
quant i ty ,   say  g(T)  , is  given  by 

- 
g = Ji F(T)g(T)d.r  (4.30) 

Nt 

We s e p a r a t e   t h e   i n t e g r a t i o n   i n t e r v a l   i n t o  a sum of   subin te rva ls   tha t   cover   the  
range of possible  temperature  values 

where 

N -  - Ao(Tmax max Tmin 1 - 

To zeroth  order ,   equat ion  (4 .3la)  i s  approximated by 

The accuracy of  the  average computed by th i s   equa t ion  can  be  improved by 
increasing  the  value of t he   a rb i t r a ry   cons t an t  A,, but  a t  t he  expense of 
increas ing   the  number of  temperatures 5J a t  which the  therodmamic  functions 
a re  computed. 

A more e f f ic ien t   p rocedure   i s   to   use  a higher  order method as follows. 
The function g ( T )  can be  expanded i n  a Taylor   se r ies  

Subs t i tu t ion  of the   se r ies   in to   the   exac t   equa t ion   (4 .31a)   y ie lds  

where 

(4.33) 
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Subst i tut ion  of   equat ion  (4 .27%)  into  equat ion (4.34b) leads t o  

With equations  (4.34a)  and (4.351, it i s  p o s s i b l e ,   i n   p r i n c i p l e ,  t o  compute g 
t o  any  order  of  accuracy,  although i f  one c a r r i e s   t o o  many terms t h e   o r i g i n a l  
purpose for int roducing  the  procedure - increased  computational  efficiency - i s  
defeated. With m = 0 ,  w e  see that  equations  (4.34)  and (4.35) become iden t i -  
c a l   t o   e q u a t i o n   ( 4 . 2 8 ) .  One can  readi ly   evaluate  an equiva len t   se t  of  rela- 
t i o n s   t h a t   a r e   v a l i d   t o  f i r s t  order.  One first introduces a simple difference 
r e l a t i o n   f o r   t h e   d e r i v a t i v e   g ( l )  ( N )  and  then  with  the  def ini t ion 

- 

FN = IN'' F ( - r ) ( l  - 1-r-N1)d-c 
N- 1 

it can  then be shown t h a t   t h e   a v e r a g e  

(4.36a) 

i s  c o r r e c t   t o   o r d e r  ( T - N )  i n  the  expansion  (4.33)  for g h ) .  

The temperature   dis t r ibut ion  funct ions are p a r t i c u l a r l y   s i m p l e   t o   f i n d  
with an e l e c t r o n i c  computer e spec ia l ly  when in t ege r   subsc r ip t   no ta t ion  i s  used. 
To i l l u s t r a t e   t h i s   p o i n t ,   l e t  F(N) be t h e   v a r i a b l e   i n  FORTRAN language  that  
represents   the   zero th-order   representa t ion   for   the   d i s t r ibu t ion   func t ion ,  equa- 
t ion   (4 .28) .  The one-dimensional  array  F(N) must b e   o f   s u f f i c i e n t l y   l a r g e  
dimension t o   c o n t a i n  a l l  of i t s  possible  elements; it must contain a t  l e a s t  
NMAX elements , where NMAX i s  given  by  equation  (4.31b). We nex t   s e t  a l l  of 
the  elements  of  F(N)  equal t o  ze ro   s ince   t hose   l oca t ions   i n  computer memory 
w i l l  be  used t o  accumulate  the sums denoted on the  r ight-hand side of  equation 
(4 .28 ) .  We then  process  each  element i n   t h e   a r r a y  T ( J , K )  t h a t  represents   the  
va r i ab le  Tjk. We do t h i s  by f i r s t  evaluat ing N = Ao[T(J,K) - TMIN] (note 
t h a t  we are using the automatic  truncation feature of FORTRAN language whereby 
t h e   i n t e g e r  on the   l e f t -hand  s ide of   the  equat ion  represents  t h e  l a r g e s t   i n t e -  
ger  value less than or e q u a l   t o   t h e   f l o a t i n g - p o i n t   r e s u l t   o f  the expression 
given on the  right-hand side of the   equat ion) .  We define TMIN as t h e  FORTRAN 
equivalent  of Tmin. The weight ing  factor  W ( J , K )  a s soc ia t ed  w i t h  the spat ia l  
point  j ,k i s  then  added t o  what i s  contained  in  F(N) by the   use   o f   the  FOR- 
TRAN statement  F(N) = F(N) + W ( J , K ) .  This   p rocedure ,   b r ie f ly   ou t l ined ,  i s  
easily general ized  such  that  one  can f ind   the   assoc ia ted   d i s t r ibu t ion   func t ion ,  
equation  (4.36) or the   h igher   o rder  forms , equation  (4.35).   Several  example 
p lo t s   o f   t empera tu re   d i s t r ibu t ions   a r e   g iven   i n   chap te r  6 .  The procedure  for 
f inding the averages,  equation  (4.32), or, i n   t he   ca se   o f   t he   h ighe r   o rde r   r ep -  
r e sen ta t ions  , equation (4.34a) , i s  straightforward  and  simple t o  program on an 
electronic  computer.  It need  only be s a i d   t h a t  one w i l l  a l so   ob ta in   add i t iona l  
savings  in  computer time i f  the thermodynamic q u a n t i t i e s  , say p ~ ,  eN, t h a t  
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correspond to   t he   t empera tu res  TN are not  computed when the   a s soc ia t ed   d i s -  
t r i bu t ion   func t ion   quan t i t i e s  F(N)  have  zero value. 

EXAMPLE EVALUATIONS OF THE THERMODYNAMIC mTNCTIONS 

The exp l i c i t   r ep resen ta t ions  p = pa(T,p),  p = p p ( T , p ) . ,  and e = U(T,p.)  
have  been  defined. By the  procedure  discussed, one  can i n v e r t   t h e  above r e l a -  
t i o n s  s o  t h a t ,  i n  e f f e c t  , t h e  above l i s t  i s  readi ly   expandable   to   a l so   inc lude  
representa t ions   o f   the   type  p = p(p,T) , p = p(e ,T) ,  T = T(p,p) ,  and T = T(e ,p ) .  
Our number of  equations i s  now suf f ic ien t ly   comple te   tha t  a value  of any  one 
va r i ab le   o f   t he   s e t   p ,  p ,  T ,  and e can be  found  once  values  are  specified  for 
any o ther  two v a r i a b l e s   o f   t h e   s e t .   I n   p r i n c i p l e ,  by in t roducing   addi t iona l  
thermodynamic hnc t ions   ( such  as enthalpy  and  entropy , for example) t h e  l i s t  
can  be  expanded f u r t h e r .  

I n   t h i s   s e c t i o n  a s e r i e s   o f   p l o t s   a r e   g i v e n   t h a t   i l l u s t r a t e   t h e   f l e x i b i l -  
i t y  of the  procedures  discussed.  These  plots  are  arranged so  tha t   t he   cu rves  
within  each  graph  represent  cuts  along  curves on bo th   t he  p-p-T ( f i g s .  4.1, 
4.2 , and  4 .3)   and  the  internal   energy  surfaces   ( f igs .  4 . 4 ,  4 .5  , and 4.6) .  The 
f igu res   a r e   fu r the r   a r r anged   acco rd ing   t o   t he   pa r t i cu la r   va r i ab le s   d i sp l ayed  
along  the  ordinate  and the   absc issa .   Pressure  i s  p l o t t e d   v e r s u s   d e n s i t y   i n  
f igure  4 .1 .  Other  f igures show pressure   versus   t empera ture   ( f ig .  4 .2)  , dens i ty  
versus  temperature  (fig.   4.31, and  energy  versus  density  (fig.  4 . 4 )  , tempera- 
t u r e   ( f i g .  4 .5)  , and  pressure  ( f ig .  4.6).  Each f igu re  shows curves  for  con- 
s tan t   t empera ture   ( i so therms) ,   cons tan t   p ressure   ( i sobars ) ,   cons tan t   dens i ty  
( i sochqres)  , or constant  energy  ( isoenergetics) , as appropriate .  Such p l o t s  
may be   i n s t ruc t ive  as we l l  as use fu l  as a ready  reference.  

Recall ,   however,   that   the  basic  equations  used  are  semiempirical   and 
t h e r e f o r e   t h e   r e s u l t s   p l o t t e d  have quant i ta t ive  value  only  within  the  regions 
where the   cons tan ts  were f i t t e d  by the  least-squares  procedure  with  eqerimen- 
t a l  da t a  by Stewart .  Thus , the   ex t reme  va lues   tha t   a re   d i sp layed   ( in   par t icu-  
l a r ,  for  the  largest   values  of  temperature  and  density) may not   be   p rec ise ly  
accurate .  The less   accura te   ranges   o f   the   curves   a re   o f ten   eas i ly   ident i f ied  
by t h e   i n f l e c t i o n s  or by the   d i scont inui t ies   in   curva ture   occur r ing  a t  the  very 
ends of the   curves .   In   the   case   tha t  more accurate   values   are   required  than 
can be  read from the   curves ,   the   reader  i s  r e f e r r e d   t o   t h e   t a b l e s   g i v e n   i n  
reference 3 o r  4, or the   equat ions   g iven   in   th i s   chapter .  

Figure 4.1(a) shows a number of  isotherms on a log-log  plot   of  pressure 
ve r sus   dens i ty   t ha t   i l l u s t r a t e   t he   ana ly t i ca l   behav io r   o f   S t ewar t ' s   equa t ion   o f  
s t a t e   pa (T ,p )  ((4.11, or, as modif ied,   eq.   (4 .2)) .  The lowest  isotherm  corre- 
sponds t o  a temperature  of 100' K. The higher  curves  are  for  higher  tempera- 
t u r e s   t h a t   i n c r e a s e  by  increments  of 10' K and  by 20' K for  temperatures above 
200' K ,  except  the  curve drawn for t he   c r i t i ca l   i so the rm T = T,, between the  
isotherms 150' and 160' K. S m a l l  c rosses   a re  drawn on the  isotherms below the  
c r i t i c a l   t o  show where the  phase  boundaries  intersect.  Knowledge of   the  exact  
behavior o f  these  isotherms as computed  from Stewart ' s   equat ion can be  qui te  
helpful .   Since  the smooth mul t iva lued   charac te r   o f   the   equat ion  i s  displayed,  
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one can r ead i ly   i so l a t e   app ropr i a t e   b ranches   i n   t he  manner indicated by t h e  
s t r a igh t - l i ne  segments so t h a t  an inverse of the   func t ion  can be  obtained, as 
aiscussed i n  the  previous  sect ion.   Al though  the  s ta te   equat ion  contains   t rans-  
cendental  terms  of a complicated  nature  fsee , e .g. , eq. ( 4 . 1 )  ) t h e i r   p l o t t e d  
r e s u l t s  have t h e  same ove ra l l   cha rac t e r i s t i c s   o f  an  equation  that  is a cubic   in  
densi ty  for the  range  of  parameters shown. A s  such,  the  equation i s  not 
greatly d i f f e ren t  from t h e  van der  Waals equat ion  ( ref .  6 )  except,  of  course, 
f o r   t h e  magnitude  of t h e  computed values.  One obse rves   t ha t   t he   c r i t i ca l   i so -  
therm  contains  an  inflection at t h e   c r i t i c a l   p o i n t  (which  can b e   i d e n t i f i e d  as 
the   po in t  where t h e   l i n e  segments  converge) as indeed it must. An i n f l ec t ion  
also  appears at the   c r i t i ca l   po in t   i n   t he   dens i ty - t empera tu re   p l ane  shown by 
figure  4.3.  

F igures   4 . l (b)  , 4 . 2 ( a ) ,  and 4 .3(a)   i l lus t ra te   the   behavior   o f   the   "phys i -  
cal"   representat ion of the   thermal   equa t ion   of   s ta te  ( 4 . 4 ) .  Note tha t   p ressure  
i s  independent  of  density  in  the two-phase  region as it should  be. The manner 
i n  which t h e  two-phase  region  degenerates t o   t h e  vapor  pressure  curve  can  be 
understood by comparing f i g u r e s   4 . l ( b )  and 4 .2(a)   (a l so ,   c f .   f ig .   4 .3(a)   wi th  
f i g .  2 i n  Weber's paper , '   re f .  4 ) .  D i f f i c u l t y  w i l l  be  encountered i f  one t e s t s  
the  computed pressure p = pa(T,p)  against   the  vapor  pressure m ( T )  as a pos- 
s ib ly   s impler  scheme than tha t  described  with  regard  to  equation ( 4 . 4 )  f o r  
separation  of  the  vapor from the  l iquid  regions  ( the  rule   quoted  in   e lementary 
t e x t s  on thermodynamics , such as r e f .  5 , i s  t h a t   f o r  T < Tc one has  vapor  for 
p < m ( T )  and l i q u i d   f o r  p > % ( T I ) .  The t e s t  fa i ls  i n   t h e  comparison  of 
p,(T , p )  with  pV(T)  s ince  the  pressure computed  from the   ana ly t ica l   representa-  
t l o n  has widely  varying  values  in  the two-phase region. One must use  the com- 
puted   sa tura t ion   dens i t ies   ( see   f low  char t )   to   cor rec t ly   separa te   reg ions .  

F igu res   h . l ( c ) ,   4 .2 (b )  , and 4.3(b)  show the  behavior  of  isoenergetic 
curves on the  respective  coordinate  planes  p-p,  p-T, and p-T. In  comparing 
f igures   b . l (b)  and b . l ( c )  a t  t he   l ower   dens i t i e s ,   no te   t ha t  as the  temperature 
increases ,   the   e f fec t   o f   dens i ty  on energy becomes l e s s   ( t he   i soene rge t i c  and 
isothermal   l ines  become colinear  implying e -+ e(T)  = cons tan t ) .  We r e c a l l  
from elementary  pr inciples   (see , e .  g. , r e f .  5 or 6 )  tha t  in  the  low-density 
gaseous  region  the  energy  depends  only on temperature e = e(T) .   This   feature  
can also  be  observed  in some of   the   o ther   f igures ;   see ,   for  example, f igures  
4 .3 (b ) ,  4 . 4 ( a ) ,  a n d ,   i n   p a r t i c u l a r ,  4 . 5 ( a )  where we see tha t  energy  remains 
approximately  constant   for   the  isochores   less   than 1 g-mole/cm3. Thus an 
appropriate   l imit ing  behavior  i s  correct ly   displayed.  

One o ther   fea ture   o f   impor tance   d i sp layed   in   f igure   b . l (c )  i s  t h a t   i n   t h e  
cryogenic  region  where  pressure  and  density  both  have  large  values,  adiabatic 
mixing  of a the rma l ly   s t r a t i f i ed   f l u id   con ta ined   w i th  a closed  container  (here 
one follows a constant  energy  curve,  say,  the  curve  labeled -2000 J/g-mole) 
would have  only a small e f f e c t  on the  value  of   densi ty ,   but   could  lead  to  
ra ther   severe   pressure  reduct ions.  

2By use  of  thermodynamic  arguments it can  be shown that  during  mixing  the 
pressure   reduces   ra ther   than   increases   ( re f .   2 ) .  
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Figures 4.4 , 4.5, and 4.6 i l l u s t r a t e   t h e   e f f e c t  of  isotherms , i soba r s ,  and 
isochores drawn on  an  energy  surface.   Note   that   d iscont inui t ies   in   energy 
occur  along  isotherms i n  the  energy-pressure  plane (or a long   i soba r s   i n   t he  
energy-temperature  plane); for example, see f i g u r e s  4 .5(b)  and 4 .6(b) .  The 
magnitude  of the  energy jump i s  a measure of t h e   h e a t  of vaporizat ion  associ-  
a ted  with  the  respect ive  values   of   temperature   and  pressure  noted.  Analogous 
d i s c o n t i n u i t i e s  are not  observed  in  the  case  of  energy  versus  density 
( f i g .  4 . 4 )  s i n c e   t h e   e f f e c t   o f  work done i n  compressing  the  vapor t o   o b t a i n  a 
l i q u i d  was accounted   for   in   the   ca lor ic   equa t ion .  One can  use  the  abrupt 
changes  observed i n   s l o p e   v a l u e s   t o  mark t h e  phase-change  boundaries.  In  the 
case of f igu re  4 .5 (a )  , the   s lope   o f   the   i sochores  ( a U / a T ) p  i s  i d e n t i f i e d  as 
t h e  cons tan t -volume  spec i f ic   hea t .   P lo ts   o f   spec i f ic   hea t  are given i n  
reference 3 (pp. 47 and 48) .  
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(a) Isotherms  computed  on  the basis of the analytical representation  pa(Tg),  equation (4.1) or (42). 

Figure 4.1 .- Pressure versus density. 
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(b) Isotherms  computed  on  the basis of the  physical  representation p (Tg), equation (4.4). P 

Figure 4.1 .- Continued. 
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Figure 4.1 .- Concluded. 

IO” 



E 
c 
0 

140 T, 180 220 260 
Temperature, OK 

(a) lsochores. 

Figure 4.2.- Pressure versus temperature. 

300 340 

aa 



(b) Isoenergetics. 

Figure 4.2.- Concluded. 



(a) Isobars. 

Figure 4.3.- Density versus temperature. 
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(b) Isoenergetics. 

Figure 4.3.- Concluded. 
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(a) Isotherms. 

Figure 4.4.- Internal energy versus density. 
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Figure 4.4.- Concluded. 



8000 

6000 

4000 

al 
- 2000 E 

=-. e, 
Fl 
c 0 

\ 
7 - 
al 

W 

- 2000 

I 

- 4000 
I 

- 6000 I I I I  I I 

I O 0  140 -rc 180 220 

: L .  
7 

. . .  

. . .  

. . .  
- 
. . .  
. . .  
. . .  
- 

i t 

301 ' ' 

, 
' 

f ~ - .  * I . - .  - 
. . .  . .". . . .  
f . " ~ ~ C .  - - - . . 

. * .... f . . .  - . - 

. . . ~  . . . . . .  

. . . . . . . . .  

. . . . . . . . .  

. . . . . . . . .  

. . . . . . . . .  

260 300 340 
Temperature, O K  

(a) Isochores. 

Figure 4.5 .- Internal energy versus temperature. 
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(b) Isotherms. 

Figure 4.6.- Concluded. 
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5. ANALYSIS OF THERMODYNAmC STATES  RESULTING FROM 

SMALL-DENSITY-VARIATION  APPROXIMATION OF 

FLUID  MOTION IN CRYOGENIC  OXYGEN TANKS 

Barrett S. Baldwin,  Walter A. Reinhardt , and  Yvonne S. Sheaffer 





SUMMARY 

Methods are   developed  for   analysis   of   the  thermodynamic s t a t e s   p r e d i c t e d  
by  a small-densi ty-var ia t ion  approximation  of   the  f luid  motion  in  a cryogenic 
s torage  tank.   Relat ions  are   der ived  for   evaluat ing  var ia t ions  in   pressure  and 
o ther  thermodynamic q u a n t i t i e s   r e s u l t i n g  from  conduction and convection  of 
hea t .  Methods are   developed  for   s imulat ing  the  heater   in  an Apollo  omgen  tank 
i n  a manner compatible  with  the  small-density-variation  approximation of t h e  
f lu id   mot ion .   Correc t ion   procedures   a re   spec i f ied   to   account   for   cowress ib i l -  
i t y   e f f e c t s  and to  suppress  nonphysical  behavior  introduced  by  the  numerical  
method used t o  determine  the  conduction  and  convection  of  heat. 

INTRODUCTION 

The in tegra t ion   procedure   for   eva lua t ing  the motion  and  temperature d is -  
t r ibu t ion   of   the   f lu id   descr ibed   in   chapters  2 and 3 i s  based on seve ra l  
approximations.  Although  pressure  gradients must be cons idered   in  the momentum 
equations , it can  be shown that   for   the  low-veloci ty   cryogenic   owgen flows 
under  consideration,  pressure  gradients  can  be  neglected  in  the  energy equa- 
t i on .   S imi l a r ly ,   t he   va r i a t ions   i n   p re s su re   w i th   t ime  do not   a f fec t   the   mot ion  
of the   gas   d i rec t ly ,   bu t   have   on ly  a cumulat ive  effect   in   the  energy  equat ion.  
The most important  coupling  between  the momentum and e n e r a   e q u a t i o n s  i s  
through  temperature  gradients  and  convection of  temperature   var ia t ions.  A s  a 
r e s u l t  , for  the  purpose  of  f inding  the  motion  of  the  gas , the   densi ty   can  be 
considered a funct ion  pr imari ly   of   temperature ,   wi th   pressure  as  a slowly vary- 
ing  parameter. If the   t empera ture   var ia t ions  are s u f f i c i e n t l y  mild, t h e  den- 
s i t y  and  enthalpy  can  be  approximated  by  the f irst  seve ra l  terms of series 
expansions i n  tempera ture   wi th   coef f ic ien ts   tha t   vary   s lowly   in  time due t o  
cumulative  changes i n   p r e s s u r e  and  temperature  level. 

I n  chapter 2 it is shown tha t   to   lowes t   o rder   the   f low  equat ions   can   be  
c a s t   i n  a form t h a t  i s  independent  of  pressure  and  density  variations.  The 
associated.   in tegrat ion  procedure  descr ibed  in   chapter  3 requi res  as input  a 
mean dens i ty  p and  thermal  expansion  coefficient f3, each of which  can be 
time-dependent to   a l low  for   cumulat ive  changes  in   pressure  and  densi ty   level .  
A t ime-dependent   temperature   dis t r ibut ion  resul ts   f rom  this   integrat ion  pro-  
cedure. I n  t h i s   c h a p t e r ,  we ind ica t e  how th is   ou tput   can  be used t o  determine 
the  attendant  slowly  varying  pressure as well as o ther  thermodynamic va r i ab le s  
such as the   dens i ty   d i s t r ibu t ion  and the   po ten t i a l   p re s su re   decay   t ha t  would 
r e s u l t  from adiabatic  mixing. Methods f o r   s i m u l a t i n g   t h e   h e a t e r   i n  an A~ollo 
oxygen tank are developed.  Correction  procedures  are  also  developed t o  account 
fo r   compress ib i l i t y   e f f ec t s  and to   counteract   nonphysical   behavior   introduced 
by the  numerical  method (ch.  3) used t o  compute evolutions  of temDerature. 

- 

So f a r   a s   t h e  thermodynamic s t a t e   o f   t he   gas  i s  concerned,  pressure  gradi- 
en t s   a r e   neg l ig ib l e  at t h e  low v e l o c i t i e s   t h a t   o c c u r   i n  a cryogenic oxygen 
s to rage   t ank   i n  a near   zero  gravi ta t ional   environment .  The pressure  can there- 
for be  considered  uniform  in  the  tank. The k ine t ic   energy   assoc ia ted   wi th   the  
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motion  of  the  gas and the  diss ipat ion  term  in   equat ion (2 .97 )  are a lso   negl ig i -  
b l e  compared t o  changes i n   t h e   i n t e r n a l  energy  of   interest .  Thus t h e  problem 
here i s  t o  evaluate  the  time-dependent thermodynamic state of a s t a t i o n a w  
s t r a t i f i e d  gas  from a knowledge  of t h e  time-dependent mean densi ty  and temDera- 
t u r e   d i s t r i b u t i o n .  The degree  of  r igor  brought  to  bear i s  independent of t he  
means used t o  a r r ive  at the  input  information on  mean density and temperature 
d i s t r ibu t ion .  The methods  developed f o r   t h i s  purpose  therefore would be  applic- 
a b l e   t o   t h e   r e s u l t s  from more accurate  higher  order  or  three-dimensional anal- 
yses  of  the  convection and conduction  processes  within  the  tank.  Regarding  the 
r igo r   o f   t he   ana lys i s ,  we have  considered  the  problem at  two leve ls .   In   p re-  
l iminary work, the  van der Waals equations  of state were  used as descr ibed   in  
the  next   sect ion.   In   subsequent   sect ions,  we include  resul ts   based on t h e  more 
exact thermodynamic relations  developed  in  chapter 4. 

APPROXIMATE PROCEDURE  BASED ON VAN DER 1.7AALS EQUATIONS 

The problem a t  hand i s  t o   f i n d   t h e   p r e s s u r e  and other  thermodynamic quan- 
t i t i e s  when the  mew densi ty  and  temperature   var ia t ion  in   the  tank  are  known. 
I n   t h i s   s e c t i o n ,  we describe  the  procedure  used to   obtain  prel iminary  values  of 
these  thermodynamic properties  by an  approximate method based on t h e  van der  
Waals equations  of state. "he mean densi ty  p i s  known i n  te rms   of   the   to ta l  
mass of  oxygen M from t h e   r e l a t i o n  

- 

where VT is the   t ank  volume. The r a t e  of  change  of mean densi ty  i s  found  by 
d i f f e r e n t i a t i o n  

where - dM/dt i s  the  ra te   of   gas   removal   ( typical ly  0 t o  3 lbm/hr) . Values of 
p a r e  computed at each t i m e  s t e p  from t h e   r e l a t i o n  

using  input  values  of dM/dt and VT. 

A t  each time step  the  values   of   temperature  T . J ~  a t  the  computational 
g r id   po in t s   ( s ee   f i g .  3.1) are  determined from the  Integration  procedure.  The 
corresponding  densit ies  pjk  are computed t o  lowest  order from t h e   r e l a t i o n  

where 'i' i s  the  VOlUme average  of  the  temperature  variation Tjk and 
6 = ( - l / P  > (  a P / a T I p  i s  the  coeff ic ient   of   thermal   expansion  corresponding  to  
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t h e  state i, T (see   eq .   (2 .16) ) .  The van der Waals equat ion   for   p ressure  i s  
- 

Dif fe ren t i a t ion   l eads   t o   t he   r e l a t ion  

for   the  coeff ic ient   of   thermal   expansion.   In   our   prel iminary  resul ts   reported 
a t  meetings  of  the  Apollo  Cryogenic Oxygen Tank Analysis Team a t  t h e  NASA 
Manned Spacecraft   Center,  a constant  value  of B was used t h a t  was evaluated 
a t  t h e   i n i t i a l   v a l u e s   o f  and 5. 

Since a uniform  spacing  of  computational  grid  points i s  employed i n   t h e  
in tegra t ion   procedure ,   the  volume average T can  be computed according t o   t h e  
r e l a t i o n  

- 

where w4.k 
i s  a weight ing  f 'unct ion  (proport ional   to   the volume assoc ia ted  with 

each gri p o i n t )   t h a t  i s  t aken   equa l   t o  1 .O at  i n t e r i o r   p o i n t s  , 0.5 a t  boundary 
points   except   in   the  corners ,   and 0.0 i n  the corners .  The corners are excluded 
(zero  weight)   because  in   the  integrat ion  procedure  descr ibed  in   chapter  3 tem- 
pera tures  at the  corners  are  not  used  and are not computed. The e r r o r   i n t r o -  
duced by this   omission i s  neg l ig ib l e  for t h e  17 x 17 array of   g r id   po in ts   used  
in   t he   ca l cu la t ions .  

Subs t i tu t ion   o f  the Tjk and  pjk in to   equat ion  (5 .5)  would lead t o   p r e s -  
su res   p jk   t ha t  are not a l l  equal  as they  should  be.   Since  the  pressure 
should  be  uniform  in  the tank, it i s  expedient to   evaluate   an  average pressure 
a c c o r d i n g   t o   t h e   r e l a t i o n  

( p  + a p 2 ) ( 1  - b p )  = R F  

where t h e  bar ind ica t e s  a volume average of t h e  same type as in   equa t ion  (5.7). 
Subst i tut ion  of   equat ion (5 .4)  i n t o  this  r e l a t i o n ,   u s e  of t h e   f a c t   t h a t  
( T  - T) = 0 , and omission  of (T  - !?I3 terms found t o  be   neg l ig ib l e   i n   t he   ca ses  
considered lead t o   t h e  approximate  expression 
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f o r   t h e   p r e s s u r e   i n  terms of  average  density,  average  temperature,  and mean 
squared  deviation  of  the  temperature from the  average  value.  The l a t t e r  quan- 
t i t y  i s  computed a t  each  t ime  step  as  in  equation (5 .7 )  accord ing   t o   t he  
r e l a t i o n  

( 5 . 9 )  

I n   a d d i t i o n   t o   t h e   p r e s s u r e y   t h e   p o t e n t i a l   p r e s s u r e  decay  (pressure  decay 
t h a t  would r e s u l t  from  complete  adiabatic  mixing) i s  o f   i n t e re s t .   Th i s  quan- 
t i t y   p r o v i d e s  a conservat ive  es t imate   of   the  m a x i m u m  drop i n   p r e s s u r e   t h a t  
could   resu l t  from an abrupt   spacecraf t  maneuver.  This  pressure  drop  could 
r e s u l t   i n   t h e   t a n k   f l u i d  becoming a two-phase  mixture,  an  undesirable  state 
according t o  d e s i g n   c r i t e r i a .  The po ten t i a l   p re s su re  decay t h a t   a r i s e s  from 
nonuniform  heating  under  various  operating  conditions i s  thus an important 
i nd ica t ion   o f   t he   l eve l  of  s t r a t i f i ca t ion   o f   t he   f l u id .   In   gene ra l ,   t he   p ro -  
cedure  for   evaluat ion  of   this   quant i ty  i s  as follows: 

t o t a l   i n t e r n a l   e n e r g y  E =-T 

spec i f i c   i n t e rna l   ene rgy   o f   co l l apsed   s t a t e  
r e s u l t i n g  from  complete  adiabatic  mixing c o l  e = E/M 

density  of  collapsed state 
- 

c o l  = P  

temperature  of  collapsed  state - 

col lapse  pressure 

po ten t i a l   p re s su re  decay 

Tcol  - T(eco l '  P C 0 1  1 

PC01 - P(Tco l )  %01 

( p  - PC01 

- 1 

1 

where e i s  the   spec i f i c   i n t e rna l   ene rgy  at ind iv idua l   g r id   po in t s  and ep i s  
a volume average. The funct ions 

found  by  inversion  of   the  equat ions  of   s ta te   for   specif ic   internal   energy 
U ( T y p )  and  pressure  p(T,p) . 

- 

T(eco l )  p c o d  and P (Tco l )  %Ol ) a r e   t o   b e  

The above  procedure  for   determinat ion  of   the  potent ia l   pressure  decay  can 
be  carr ied  out   using  approximate  equat ions  of   s ta te  or t h e  more exac t   re la t ions  
given  in   chapter  4. O u r  preliminary results were  based on t h e  van der Waals 
equat ions  of   s ta te ,   equat ion ( 5 . 5 )  and ( r e f .  1) 

Substi tution  of  equation (5.5) i n t o  (5.10) t o   e l i m i n a t e  T y i e lds  
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e = c 1  

This   r e l a t ion  can  be  used t o  

i n  terms of   p ,  p, ( p 2 ) ,  and 
- 

evaluate e p  and  obtain  an  expression  for ecol 

( p 3 )  according to   the   foregoing   genera l   p rocedure  

- 
- 

for   f ind ing   the   po ten t ia l   p ressure   decay .   Di rec t   subs t i tu t ion   in   the-  above 
r e l a t i o n   a l s o   y i e l d s  an  expression  for ecol i n  terms of  pcol  and p c o l  = p. 
Equating  the two expressions  for  ecol then   leads   to   the   formula  

- 

- 
where p2  and p 3  i nd ica t e  volume averages.   Substi tution  of the  f i r s t -o rde r  
dens i ty   re la t ion   equat ion  ( 5 . 4 ) ,  rearrangement , and omission  of ( T  - ! f ) 3  
terms l e a d s   t o  the approximation 

- 

which  expresses the po ten t i a l   p re s su re  decay i n  terms of  the average  density 
and mean squared  deviation of temperature  from the average  value. 

c = c  + R 
p v 1 - 2ap( l  - bp)2/RT 

In   our   p re l iminary   resu l t s  a constant  value  of cp i s  used  that  i s  evaluated 
a t  t h e   i n i t i a l   v a l u e s  of p and T. The values of the constants R , b , a ,  and 
cv used   in   the  van  der Waals equations  were  chosen  such tha t  t h e   c r i t i c a l  
pressure,   temperature , and  density are matched exac t ly   acco rd ing   t o   r e l a t ions  
given  by  Hirschfelder,   Curtiss , and B i r d  ( r e f .  1). 

- 

PROCEDURE BASED ON EXACT THERMODYNAMICS 

I n  t h i s  sec t ion  a more exact method i s  developed  for  f inding the  pressure 
and o ther  thermodynamic quan t i t i e s  when t h e  mean densi ty  and  temperature dis-  
t r i b u t i o n   i n   t h e   t a n k  are known. This method makes use  of a temperature dis-  
t r ibut ion  funct ion  to   save  considerable   computat ion time. A method f o r  simu- 
l a t i n g   t h e  heater i n  an  Apollo oxygen tank a l s o  i s  described, and correct ion 
procedures are developed t o  account   for   compressibi l i ty   effects   and  to   counter-  
act  nonphysical  excursions  of  pressure  introduced by the numerical method 
(ch. 3) used t o  compute evolut ions of the temperature   dis t r ibut ion.  



Computation of Tank Pressure 

When t h e  mean densi ty   and  temperature   dis t r ibut ion are known, the  uniform 
pressure   in   the   t ank   can   be  computed. For th i s   purpose  it was  found  expedient 
t o  determine a tempera ture   d i s t r ibu t ion   func t ion  FN of  the  type  developed i n  
chapter 4 (after eq. (4.18)), ra ther   than   cons ider ing  thermodynamic quan t i t i e s  
at each  computational grid poin t .  The procedure  using a d i s t r ibu t ion   func t ion  
and  computation  of  thermodynamic q u a n t i t i e s  at temperatures TN replaces  com- 
puta t ion  a t  grid  temperatures Tjk. The advantage i s  t h a t   t h e r e   ' a r e  many more 
values  of Tjk than  of rpN, so many unnecessary  repet i t ions  of   near ly   ident ical  
ca lcu la t ions  are eliminated. The tempera ture   d i s t r ibu t ion   func t ion  F i s  a 
function  of  temperature t o  be  evaluated at a ser ies   of   f ixed,   equal ly   spaced.  
temperatures TN with N = 1 , 2 , 3 , . . . Nmax. The temperature  dependence 
of F i s  here   ind ica ted   paramet r ica l ly  by expressing F as a funct ion of N, 
t h a t  i s ,  FN. The funct ion FN i s  de f ined   t o   be  a weighted number of computa- 
t ional   gr id   points   with  temperatures   between TN - AT and TN + AT where t h e  
TN c o n s t i t u t e  a f ixed   a r ray  of temperatures  with  uniform  spacing  equal t o  AT. 
The weighting employed i s  p r o p o r t i o n a l   t o   t h e  volume associated  with  each com- 
pu ta t iona l   g r id   po in t .   I n t e r io r   po in t s   a r e   g iven  a weight Wjk = 1 . 0 ,  Por 
boundary  points wjk = 0.5 , and  the  corner   points  are given  zero  weight  since 
the i r   t empera tures   a re   no t  computed i n  the   in tegra t ion   procedure .  For each 
value  of j and k ,  Wjk i s  a s s igned   t o   t he  two FN between  which i t s  temDera- 
t u r e   l i e s   i n   p r o p o r t l o n   t o  i t s  proximity  to   each.  That i s ,  i f  
Q < Tjk < TN+~, FN i s  increased by  an  amount WJ~(TN+~ - T~~)/AT, and F N + ~  
i s  increased by  an amount Wjk(Tjk - TN)/AT. Thus t h e  sum 

11 max 

i s  equal t o   t h e   t o t a l  number of   inter ior   computat ional   gr id   points   plus   half  
t h e  number of  boundary  points,  not  counting  corners. The quant i ty  FN i s  
e s s e n t i a l l y   e q u a l   t o   t h e   t o t a l  number of  computational  grid  points  with temDer- 
a t u r e  between TN - (1/2)AT and 'I)q + (1/2)AT except   for  a small readjustment 
corresponding t o  a l i nea r   i n t e rpo la t ion .   F igu re  5 .1  shows an example  of a tem- 
pe ra tu re   d i s t r ibu t ion  FN p lo t ted   versus  TN. Additional  examples  and  further 
discussion  of  the meaning  of t h i s   d i s t r ibu t ion   func t ion   a r e   g iven   i n   chap te r  6.  

An array  of  temperatures TN i s  associated  with  the  temperature   dis t r ibu-  
t ion   func t ion  FN. Since  the  pressure i s  uniform i n  the   t ank ,  a t  a given  tank 
pressure  p ,   associated  arrays  of   densi ty  p~ and  internal  energy eN can  be 
computed according t o   t h e   r e l a t i o n s  

The computation  of  the  function  p(p,%) i s  described af ter  equation (4.16) and 
U ( % , ~ N )  i s  given  by ( 4 . 5 ) .  Since  the FN a r e   p r o p o r t i o n a l   t o   t h e  volume  of 
gas i n  the  temperature  range TN - (1/2)AT t o  TN + (1/2)AT t h e  volume averages 
p and E can  be  computed  according t o  
- 
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5-  A t  the  beginning  of an in t eg ra t ion  
f o r   t h e  motion  and  temperature  of t h e  
f l u i d  a tank   pressure  p and values of 

g r id   po in t s   a r e   spec i f i ed .  The d i s t r i -  
but ion  funct ion FN i s  computed,  and 
t h e  above r e l a t ions   a r e   u sed   t o   de t e r -  

Figure 5.1.- Typical  temperature  distribution  function. mine t h e   i n i t i a l   v a l u e s  of p and G .  
In   the  subsequent   integrat ion  the  var i -  
a t ion  of  p i s  computed  from equation 
(5 .3 )  and  depends on the   spec i f i ed  

I I I temperature  Tjk a t  the  computational 
I 30 I40 I 50 I60 I 70 I 80 

Temperature, O K  

- 

- 

r a t e  of gas  removal dM/dt. The values  of T.k r e s u l t i n g  from t h e   i n t e g r a t i o n  
for t h e  motion  of t he   gas   ( s ee   eqs .   (3 .2~3)   an i   (2 .95a ) )   a r e   u sed   t o  compute FN 
a t  the  end of each  time  step. The problem  then  arises  of computing t h e  change 
in   p re s su re  Ap i n  each  time  step. It should   be   reca l led   tha t   p ressure  p i s  
uniform i n   t h e   t a n k .  By d i f f e r e n t i a t i o n  it can  be  seen  that   changes  in  the pN 
a r e   r e l a t e d   t o  changes in   p ressure   accord ing   to  

s ince  the  values   of  TN a re   he ld   f ixed   th roughout   the   in tegra t ion .   Subs t i tu -  
t i o n  of t h i s   i n   t h e   r e l a t i o n  

y i e l d s  

where t h e   s u b s c r i p t  n r e f e r s   t o   t h e   t i m e   s t e p   i n   t h e   i n t e g r a t i o n .   M u l t i p l i -  
ca t ion   of   the  l as t  equation  by  (FN) summation over N ,  and  subst i tut ion  of  n+l ’ 

Nmax 
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y i e l d  
Nmax  Nmax Nmax 

Since pn+l and ( F N ) ~ + ~   a r e  known at t h e  end  of t h e   ( n + l ) t h   t i m e   s t e p ,   t h i s  

equation can be  used t o  compute t h e  change in   p re s su re  Ap associated  with  the 
t ime  s tep.  Once Ap i s  known, equation (5.19)  can  be  used t o  compute t h e  
updated  values  of  density ( p ~ )  . A s  a check , can  be computed using 

equation  (5.20)  for  comparison  with  the  imposed  value from equat ion  (5 .3) .  
Finally,   the  updated  pressure i s  computed according t o  

- 

I 

n+ 1 - 

Pn+l = Pn + AP 

The s t ructure   of   equat ion  (5 .21)  i s  such tha t   the   va lue   o f  p n + l  computed 
from equation  (5.20) w i l l  always  be  driven  toward  the  imposed  value  from equa- 
t i o n   ( 5 . 3 )  so that   cumulat ive  dr i f ts   cannot   occur .  This follows  from  the  fact  
t h a t   t h e  f i r s t  term on the  r ight   of   equat ion  (5 .21)   c losely  resembles   the  lef t  
side  of  equation  (5.20).  Cumulative drifts of   the   ind iv idua l  ( p ~ )  computed 

from  equation (5 .19)  can take   p lace ,  however. To a v o i d   t h i s ,  a t  every  tenth 
t ime  s tep,   the  PN a r e  recomputed  according to   equat ion   (5 .13) .  It has  been 
found that   the   foregoing  procedure i s  qui te   s tab le ,   and ,   for   the   s izes   o f   t ime 
s t e p  imposed  by s t a b i l i t y   c r i t e r i a   o f   t h e   i n t e g r a t i o n   p r o c e d u r e ,  it i s  qui te  
accurate  with a lo K spacing  of  the  temperature  elements TN. 

- 

n+ 1 

Once the   p ressure  i s  determined  the  potential   pressure  decay can be com- 
puted  by  the  procedure  described  in  chapter 4 t h a t   u t i l i z e s   t h e   d i s t r i b u t i o n  
function FN. A s  a check the   po ten t i a l   p re s su re  decay  can a l so   be  computed by 
the   a l t e rna t ive  method of  chapter 4 f o r  which the   p ressure  p  and temperatures 

Temperature Mean a t  computat ional   gr id   points   are   ut i -  
l imits, density, l ized.   Figure 5.2 shows a comparison Pressure 900 psia 

"K gcm-3 
-E 5 o o p  *"-o" - "" "" I 2o t o180  o,640 of  potential   pressure  decays computed 

by t h e  two  methods f o r  a l i n e a r  temper- 

indicate   the  potent ia l   pressure  decay 
~ 4 0 0 ~ " B - - - 3 - - - - - - - - - - - 0 1 3 0 t ~ 1 7 0  0.666 a tu re   d i s t r ibu t ion .  The dashed  l ines 

? 

2 

.E 2 0 0  - 

72 

7 147.5to152.5 0.752 values  of  the  temperature  array  spacing 6 

t i a l  pressure  decay computed using  the Q 

symbols indicate   values   of   the   poten-  
+ 0 

d at a l l  computat ional   gr id   points .  The 
uat ion  of   the thermodynamic quan t i t i e s  a 

a -0 - - -0- - - - - - - - - - - 0140 t o  160 0,729 

300 - f o r  each  case computed exact ly  by  eval- 

- 
c c 

A : * 1oo:AA-4 """""""" 1 4 5 t o  155 0.748 d i s t r ibu t ion   func t ion  FN for   var ious 
a 

0 0  2 4 6 8 1 0  

A -&A . "- " _  "- "_  
Temperature  array  spaclnq AT, O K  

AT. It can be  seen from t h e   r e s u l t s   i n  
f igure  5 .2   that   the   temperature   array 

Figure 5.2.- Effect of temperature  array  spacing on spacing AT = lo K provides  adequate 
computed potential pressure decay. accuracy  for a l l  the  cases  considered. 
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Method f o r  Heater Simulation 

An i n t e r n a l   h e a t e r  i s  used in   t he   Apo l lo  oxygen t anks   t o   i nc rease   t he  
pressure when it falls  below 865 p s i a  8ue t o  gas  removal. In  unpublished work 
of C .  K. Fores te r ,  D.  D. Rule,  and H. W. Pat terson  reported at meetings  of  the 
Apollo  Cryogenic Oxygen  Tank Analysis Team, a segment o f   t he  w a l l  w a s  used t o  
simulate such a hea ter .  It was found that   the   boundary-layer   f low  in   the 
neighborhood  of  the  heater  cannot  be  adequately  resolved  with a uniform  grid 
spacing when t h e   a c c e l e r a t i o n   f i e l d  i s  of  order loe6  g or grea ter .  Methods  can 
nevertheless   be  found  that   lead  to   physical ly   reasonable  and qua l i ta t ive ly   cor -  
r e c t   r e s u l t s  i f  a t t en t ion  i s  confined t o  energy  conservation,  and  accurate 
values  of  heater  temperature are not  required.  

I n   t h i s   s e c t i o n ,  a method for   s imula t ing   the   hea te r   by   ass igning   se lec ted  
computational  grid  points as heater  elements i s  described. When the   hea t e r  i s  
on,  the  temperatures  of  the  grid  points  assigned as heaters   are   increased by an 
amount dependent on the  heat  capacity  of  the  gas  associated  with  each  grid 
poin t .  The heat  capacity depends on t h e  volume  of gas VH associated  with a 
g r id   po in t ,  which i s  equal to   the  depth  of   the  tank  t imes  the  product   of   gr id  
point   spacings  in   the x and  y directions.  Adjustments  in  heater  temperatures 
a re  made at the  beginning and  end  of a t ime   s t ep   i n   t he   i n t eg ra t ion   fo r  motion 
and temperature   of   the   f luid  descr ibed  in   chapter   3 .  The energy  balance w i l l  
be  properly  maintained i f  a t  the  beginning of each  time  step  the  heater  element 
temperatures  are  increased by an amount ATH corresponding t o  a spec i f ied  
hea ter  power dQ/dt  added t o   t h e   t o t a l  gas volume VHT associated  with  the 
heater   e lement   computat ional   gr id   points ;  t h a t  i s ,  

ATH - - ( dQ/dt ) A t  
'P'HT 

(5.23) 

before   the   in tegra t ion   s tep .  The gas volume associated wi th  each i n t e r i o r  
computational  grid  point i s  

V, Ax  Ay 

where Ax and Ay are   the  dis tances   between  gr id   points ;   the   depth  of   the  tank 
i s  e q u a l   t o  V T / R ~ % ;  VT i s  t h e   t o t a l  t ank  volume;  and Ex,% a re   t he   t ank  
dimensions. 

I f   t h e   h e a t e r  element  computational  grid  points  are  interior  points , t he  
t o t a l   h e a t e r  gas volume VH, i s  e q u a l   t o   t h e  number of  heater  elements  times 
VH. But h e a t e r  volume elements on t h e  boundary a re  half  the  value  given  in  
equation (5.24) s ince   t he  boundary  passes  through  the  grid  points.  When t h e  
hea ter   e lements   a re   in   the   in te r ior   the i r   t empera tures  w i l l  r i s e   u n t i l  a bal-  
ance i s  reached  between the temperature  increase from equation  (5.23)  and the 
decrease due t o  convection  and  conduction computed in   t he   i n t eg ra t ion   p rocedure  
of  chapter 3. When the  heater   e lements  are on the  boundary , however, t he   i n t e -  
gration  procedure  does  not modif'y t he i r   va lues .   In   t ha t   ca se ,  it i s  necessary 
t o  a l low  for  a decrease  in   temperature  a t  t he  end of  each  time  step  according 



t o   t h e  amount o f   h e a t   t r a n s f e r r e d   t o   t h e   i n t e r i o r   g r i d   p o i n t s  from t h e   h e a t e r  
elements. For a hea te r  on a w a l l  p a r a l l e l   t o   t h e  y ax is   the   appropr ia te  
change i n  wall heater  element  temperatures i s  

a f t e r   t h e   i n t e g r a t i o n   s t e p .  When t h e   h e a t e r  i s  turned  off   (dQ/dt  = 0 )  t h e  
increase  ATH computed in   equat ion   (5 .23)  i s  zero. If t h e   h e a t e r  i s  on a 
w a l l  , t h e  ATH computed in   equat ion  (5 .25)   corresponds  to  an insu la ted  w a l l  
boundary  condition when t h e   h e a t e r  i s  off   except   for  a small (physically  cor- 
r e c t )   l a g  due to   t he   hea t   capac i ty   o f   t he   gas   ad j acen t   t o   t he  wall. 

The  same type of computation as tha t   in   equa t ions   (5 .23)  and (5.25)  can  be 
used a t  a l l  boundary  points t o   s i m u l a t e   t h e   h e a t   l e a k  from the   ex te r io r   o f   t he  
tank .   In   tha t   case   dQ/dt   in   equa t ion   (5 .23)  i s  replaced by the   hea t   l eak  
r a t e  dQL/dt. 

The power r ad ia t ed  from the  heater   can  be  a l lowed  for   by means of  t h e  
r e l a t i o n  

where  d&/dt i s  the   spec i f i ed   i npu t   hea t e r  power and 

where E i s  the   emiss iv i ty   ( typ ica l ly   0 .321 ,  ur t h e  Stefan-Boltzmann c o n s t a ~ t ,  
and AH the   hea te r   a rea .   Accord ing   to   re fe rence   2 ,   l ess   than  10 percent  of 
t he   r ad ia t ed  power i s  absorbed   in   the  oxygen (usua l ly  much less  depending on 
the  heater   temperature) .   Therefore ,  most o f   t he   r ad ia t ion  i s  absorbed  in   the 
tank wal l ,  and Qrad should  be  added t o   t h e   h e a t   r a t e   d Q L / d t .  mat i s  , 
r ad ia t ion  from t h e   h e a t e r  i s  absorbed i n   t h e  w a l l  and hea t s   t he   f l u id   ad jacen t  
t o   t h e   w a l l b y  conduction  in  the same manner as h e a t   l e a k i n g   t o   t h e   i n t e r i o r  of  
t he   i n su la t ed  wall  from t h e  warmer outer  w a l l  o f   the   t ank .  

CORRECTION FOR SPURIOUS INTERNAL SOURCES 

The in t eg ra t ion  method f o r   t h e  motion and temperature  of  the  f luid 
descr ibed  in   chapter  3 u t i l i zes   the   so-ca l led   "conserva t ive  form'' o f   the  con- 
vective  terms. The method i s  no t   s t r i c t ly   conse rva t ive  i n  the  sense  of   ref-  
erence 3, although it may provide more accurate  treatment  of  convection  effects.  
Also the   t rea tment   o f   hea te r  and wall computational  grid  points  described i n  
the  preceding  sect ion i s  n o t   s t r i c t l y   c o n s e r v a t i v e .  For that   reason small 
spurious  internal   sources  may lead  to  erroneous  cumulative computed pressure 
va r i a t ions .  To avo id   t h i s   t he  method  can be made conservat ive  overal l  by 
applying a cor rec t ion   to   the   t empera tures   T jk  a t  t h e  end  of  each time s t ep .  
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For that   purpose  integrat ion  of   the  energy  equat ion  over   the  tank volume, use 
of Gauss'  theorem, and rearrangement  lead t o   t h e   e x p r e s s i o n  

a " dM 
at - d t + h o d t  

where 

E = peVT t o t a l   i n t e r n a l   e n e r g y  
- 

ho 2 h(p ,T)   spec i f ic   en tha lpy   of  
f l u i d  a t  t h e   e x i t   o r i f i c e  

t o t a l  power input "T dQ + "- - 
a t  - a t  at 

( 5 . 2 8 )  

(5 .30)  

I 
dM 
d t  

ra te  of  f luid  removal 
(negat ive  for   outf low) 

If a s t r ic t ly   conserva t ive   numer ica l  method were used t o   i n t e g r a t e   t h e   e x a c t  
conservat ion  re la t ions,   equat ion  (5 .28)  would be s a t i s f i e d .  A procedure  for 
imposing  equation  (5.28) i s  developed i n  a l a t e r   s e c t i o n .   F i r s t ,  however, it 
i s  worthwhile to   consider   the  corresponding  energy  conservat ion  re la t ion  that  
appl ies   to   the  approximate  energy  equat ion  der ived  in   chapter   2 .  

In tegra t ion   over   the   t ank  volume, application  of  Gauss'  theorem t o   t h e  
energy  equation  derived  in  chapter  2,   and  use  of M = pVT lead t o  the  
expression 

- 

If a s t r ic t ly   conserva t ive   numer ica l  method  were  used t o   i n t e g r a t e   t h e  equa- 
t ions   o f   chapter  2 ,  the  above  equat ion  would  be  sat isf ied.   Conversely,   overal l  
energy  conservation w i l l  r e s u l t   i f  t h i s  r e l a t i o n  i s  imposed a t  t h e  end  of  each 
time s t e p  by a uniform  readjustment  of  the  temperatures  Tjk a t  t h e  computa- 
t i o n a l   g r i d   p o i n t s .  A uniform  readjustment i s  chosen  because we have  no  infor- 
mation  on t h e   s p a t i a l   l o c a t i o n   o f   t h e   e r r o r .  For this  purpose  ho  can be 
t aken   equa l   t o  C-T and 

LJ 

S e t t i n g  ho e q u a l   t o  %!f has   t he   e f f ec t   o f  removing t h e  dM/dt term from 
equation  (5.31). The meaning of   th i s   choice  i s  t h a t  w e  take the  enthalpy a t  
t h e   e x i t   o r i f i c e   t o   b e   e q u a l   t o   t h e   a v e r a g e   s p e c i f i c   e n t h a l p y   i n   t h e   t a n k  
r a the r   t han   a t t empt ing   t o   spec i fy  an e x a c t   l o c a t i o n   o f   t h e   e x i t   o r i f i c e .  Impos- 
i t i o n   o f   t h i s   r e l a t i o n  a t  t h e  end  of  each time step  ensures   conservat ion  of  
energy  and removes pressure   excurs ions   resu l t ing  from small but  cumulative 
spurious  internal  energy  sources  arising  from  the  nonconservative  numerical  
method descr ibed  in   chapter  3. A dimensionless  temperature H i s  de f ined   i n  
equation  (2.95a)  and Hjk i s  evaluated at the   computa t iona l   g r id   po in ts   in   the  
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numerical  integration  procedure  of  chapter 3 (eq.  
Tjk at the  computat ional   gr id   points  are r e l a t e d  
tures  Hjk by t h e   r e l a t i o n  

(3.2d) 1. The temperatures 
t o   t h e  dimensionless  tempera- 

where TR i s  a reference  temperature  that   can  be time dependent  and  Tdif i s  
an arbi t rary  constant   temperature   difference.  The uniform  readjustment  of  the 
Tjk a t  each time step  can  be  effected  by a change i n   t h e   r e f e r e n c e  temperature 
TR ra ther   than   modie ing   a l l   e lements   o f   the   computa t iona l   mat r ix  H,ik. For 
tha t   purpose   the  volume average  of  equation  (5.32) 

5 = TR + TdifE (5.33) 

is  needed. A t  t h e  end  of  each time s t e p   t h e  volume average is computed t o  
determine  the  necessary  correction of  TR. In t eg ra t ion  of  equation (5.31) over 
one  t ime  step  yields 

- 1 dQT At 
'n+ 1 n Mc d t  

- T  = - -  

Substi tution  of  equation  (5.33)  leads t o   t h e   r e l a t i o n  

from  which it fo l lows   tha t   the   requi red   cor rec t ion  ATR = ( T R ) ~ + ~  - (Q), i s  

(5.34) 

Cor rec t ion   t o  Account f o r  Mean-Density Variations 

Additional  nonphysical  cumulative  excursions  of  pressure  can resul t  from 
the  use of approximate  thermodynamics in   the   in tegra t ion   procedure   for   de te r -  
mination  of  the  motion and temperature   of   the   f luid.  If an exact  compressible 
conservative method were used,  equation ( 5 . 2 8 )  would be   sa t i s f ied .   Converse ly ,  
imposition  of  equation ( 5  2 8 )  by  readjustment  of  d%/dt w i l l  r esu l t  i n  an 
overall   energy  balance and w i l l  r es tore   the   cor rec t   p ressure   var ia t ion   wi th  
time. If t h i s  were done a t   every  time s tep ,   the   cor rec t ion   for   spur ious   in te r -  
nal   sources   (eq.   (5 .34))  would be  superfluous  since it would be  overridden. 
However, t h e  computing  t ime  required  for   evaluat ing  the  necessary thermodynamic 
func t ions   i n   t he i r   p re sen t  form (descr ibed  in   ch.  4 )  is not  negligible.   Since 
the   cor rec t ion   to   account   for   compress ib i l i ty   e f fec ts  i s  r e l a t i v e l y  small f o r  
shor t  time per iods ,  computing time can be  saved  by  imposing it only a t  every 
t en th  time s t e p .   I n   t h a t   c a s e ,   s i n c e   t h e  computing time requ i r ed   fo r  imDosing 
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t h e   c o r r e c t i o n  for spur ious   in te rna l   sources  at every time s t e p  i s  n e g l i g i b l e ,  
both  correct ions are worthwhile. 

Subs t i t u t ion  of equation (5 .29)  i n t o  (5.28) and  integrat ion  over  one time 
s t e p   y i e l d  

Th i s   r e l a t ion  may n o t   b e   s a t i s f i e d  i f  a nonconservative  numerical method i s  
used. It w i l l  be satisfied i f  a correct ion power  dQc/dt i s  added t o   t h e  
t o t a l   i n p u t  power d+/dt   such  that  

(5 .35)  

It i s  convenient t o  add t h i s  small c o r r e c t i o n   t o  the  w a l l  heat   leak Dower 
dQL/dt d i scussed   a f te r   equa t ion   (5 .25) .  Thus hea t  i s  added (or subtracted)  a t  
t he   t ank  w a l l s  t o  allow  for  the  difference  between  accurate thermodynamics  and 
the approximate  thermodynamics  used in   the   in tegra t ion   procedure .   Phys ica l ly  
r e a l i s t i c   p r e s s u r e   v a r i a t i o n s  w i l l  r e s u l t   f o r   c a s e s   i n  which the  convection  and 
conduction  processes  within  the  tank are adequately  approximated  by  the two- 
dimensional   integrat ion  procedure  for  a square  tank  described  in  chapters 2 and 
3 .  

Method for Including  Effects  of Tank S t r e t c h  a n d  
Variable Transport   Properties 

Since  the  Apollo oxygen tanks are thin-wal led  pressure  vessels ,   the   tank 
volume  depends on the pressure   accord ing   to  the  r e l a t i o n  

v = v  [l+" 1 dvT 
T TO v Q? (P - Po) 

TO I (5.36) 

where VT and p are the i n i t i a l  volume and pressure ,   respec t ive ly .  Accord- 

i ng   t o   r e l a t ions   g iven   i n   unpub l i shed  work of C .  K .  Fo res t e r ,  dVT/dp can be 
considered  constant  and i s  given  by 

0 
0 

where 

dVT 
3 r ( l  - u)VT 

" - 0 

dP  2b 1E ?r 

r/bl  r a t io   o f   sphe r i ca l   , t ank   r ad ius   t o  w a l l  th ickness  

(5.37) 

(5 Poi s son ' s   r a t io  for t ank  w a l l  mater ia l  
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VT i n i t i a l   t a n k  volume 
0 

E Young's modulus for tank wall mater ia l  
Y 

The changes i n   t a n k  volume due t o  changes i n  pressure  are small, but  they  can 
have a l a r g e   e f f e c t  on t h e   r a t e  of  pressure rise due t o   h e a t i n g  and on t h e  
potent ia l   pressure  decay.  To account for such   e f fec ts  it i s  necessary t o  
replace  equation (5.28) with 

which i s  a form of t h e  f irst  law of  thermodynamics. This re l a t ion  i s  applic- 
a b l e   t o   t h e   e n t i r e  volume o f   s t r a t i f i ed   f l u id   because   p re s su re   g rad ien t s   a r e  
negl igible .   Different ia t ion  of   equat ion  (5 .36)   with VT , dVT/dp,  and po he ld  
cons tan t ,   and   subs t i tu t ion   in   the  l as t  r e l a t i o n   y i e l d  

"- dE dQT dM 1 "T dp2 
a t  - d t  + ho d t  2 dp d t  

""- 

In tegra t ion   of   th i s   equa t ion   leads   to   the   express ion  

E = E 0 + It (2 + ho 2) d t  - - 1 - dvT (p2 - p:) 
0 2 dP 

(5.38) 

for t h e   t o t a l   i n t e r n a l   e n e r g y   i n   t h e   t a n k .  

To ensure   conserva t ion   of   enera   in   each  time s t e p  a procedure similar t o  
tha t   l ead ing   t o   equa t ion  (5.21) can be a p p l i e d   t o   t h e   r e l a t i o n  

t o   o b t a i n  

where FN i s  evaluated a t  n+l.   Since pe  = E/VT, subst i tut ion  of   equat ions 
(5.36)   and  (5 .38)   into  the las t  r e l a t i o n   y i e l d s  

- 



Similar ly  , use 
(5 .21)   y ie ld  

Nmax 

of p = M/VT and  substi tution  of 
- 

N max 

equation  (5.36)  into  equation 

I n   t h i s   d e r i v a t i o n  F i s  evaluated a t  t h e   ( n + l ) s t   i n t e g r a t i o n   s t e p .  If 
equations  (5.39)  and  95.40) are s a t i s f i e d  a t  each  time  step,  overall  conserva- 
t ion  of   energy and mass i s  assured. A t  t h e  end   of   an   in tegra t ion   s tep   a l l  
quant i t ies   appearing  in   these  equat ions are known except Ap and AT,, t h e  
change in   reference  temperature  imposed  by t h e   e f f e c t  o f   t ank   s t re tch  on the  
to t a l   ene rgy .  Note tha t  equations  (5.39)  and  (5.40)  can  be  solved  for Ap and 
AT, a t  each time s t e p  s o  that energy  and mass are conserved. 

The temperatures T j k  a t  the   computa t iona l   g r id   po in ts   a re   re la ted  to the  
dimensionless  temperatures Htk computed in   the   in tegra t ion   procedure   o f  chap- 
t e r  3 by  equation  (5.32).  Su s t i t u t i o n  of t ha t  equat ion  into  the  expression 
fo r   t he   d i s t r ibu t ion   func t ion  FN, equation  (5.28)  of  chapter 4 y i e lds  

-S rdif~.k + T, - ( T ~  + AT?) 

AT 
J 

The WJk are constant  weighting  values  discussed  previously. The TN are an 
array of  fixed  temperatures  with  uniform  spacing AT and Td i f  i s  an a r b i t r a r y  
temperature  difference.  A t  t h e  end  of   an  integrat ion  s tep  according  to   the 
method of  chapter 3, the dimensionless  temperatures Hjk are known. There- 
fo re  , a l l  quant i t ies   needed   to  compute FN for use in   equat ions   (5 .39)  and 
(5.40) are known except  the  reference  temperature TR. However, TR i s  known 
at  the   p rev ious  time s tep.   Therefore ,  FN i s  evaluated  by means of the 
r e l a t i o n  



where AT i s  the  spacing  between  the TN, t h a t  i s  , AT = TN+l - TN. Subs t i t u t -  

ing  equat ion (5.41) i n t o  (5.39) and  (5.40)  yields a p a i r  of equat ions  too 
lengthy t o  be  wri t ten  out   convenient ly .  However, the  important   point  i s  t h a t  
t he   r e su l t i ng   equa t ions  can   be   so lved   (by   i t e ra t ion)   for  Ap and ATR a t  each 
t ime  s tep .   In   th i s   p rocedure  no addi t iona l   cor rec t ions  f o r  spu r ious   i n t e rna l  
sources o r  changes i n  mean dens i ty   a re   requi red   s ince   energy  and mass a r e  
already  conserved. The s t r u c t u r e   o f   t h e   r e l a t i o n s   i n   t h i s   s e c t i o n  i s  such t h a t  
t h e  computed values of p and are   automatical ly   dr iven  toward  the  correct  
values and s i g n i f i c a n t   d r i f t s  do not  occur. 

- 

A t  the  end  of  each  t ime  step,   and  also at t h e  s tar t  o f   t he   ca l cu la t ion ,  
when p and TR a r e  known a number of   quant i t ies   needed   for   ca lcu la t ion  at t h e  
next   t ime  s tep  are   evaluated a t  the  f ixed  temperatures  TN and  pressure p .  
Each element of the  f ixed  double   arrays 

e = U(pM,TN) MN (5 .43)  

used in   t hese   eva lua t ions  i s  computed and s to red   du r ing   t he   ca l cu la t ion   t he  
f i r s t   t i m e  it i s  needed,  using  the  thermodynamic  relations  of  chapter 4.  The 
s tored  values   are   used,  i f  they  have  been  previously computed, t o  minimize t h e  
computing  time. It has  been  determined  that a uniform  spacing  of 10 p s i  
between t h e  and 1' K spacing  between  the TN provide  adequate  accuracy. 

The d e n s i t i e s  pN and der ivat ives   (ap/apIT  and  (ape/apITN  are  
evaluated  according  to  N 

where M i s  chosen  such t h a t  p~ I p < p ~ + ~ .  Addit ional   der ivat ives   needed  in  
the   ca l cu la t ion   a r e  
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e - e  (s). = 
M ,N+1 m 

P TN+l - TN 

Again M i s  chosen  such t h a t  6 p < m+l and these   der iva t ives  are evalu- 
a t e d  at all N s o  t h a t   t h e   q u a n t i t i e s  

can  be computed and s t o r e d   f o r  a l l  N.  Arrays wN (kinematic   viscosi ty)  and 
kN ( thermal   conduct ivi ty)  are a l s o  computed  and s tored  a t  t h e  end of each time 
s t e p   f o r   u s e   i n   t h e   n e x t   i n t e g r a t i o n   s t e p .  The re la t ions   used  are 

where the   func t ions  V (  p , T )  and k (  p , T )  are evaluated  according  to  an unpub- 
l i shed  recommendation  of H.  M. Roder.  Equations (5 .49)  through ( 5  3 2 )   i n d i c a t e  
the   eva lua t ions   used   to  impose va r i ab le   coe f f i c i en t s   i n  the  equations of chap- 
t e r  2. The value  of N used a t  each  computational  grid  point i s  chosen  such 

that T~ Tjk  < T N + l m  
The t a n k   s t r e t c h   e f f e c t   a l s o   m o d i f i e s   t h e   r e l a t i o n s   f o r   p o t e n t i a l   p r e s s u r e  

decay l i s t e d  a f te r  equation ( 5 . 9 ) .  The t o t a l  mass of  the  collapsed s ta te  i s  
unaffected,   but  the t o t a l  energy  and volume are  given  by 

Then 

The equations of s ta te  

1 dV 
Ecol  2 dP PC01 

= E + - - ( p 2 -  2 ) 

e - 
co l  - E c o l ~ ( P c o l V c o l )  

(5 .53)  

( 5 . 5 4 )  



are a l so   needed .   I te ra t ive   so lu t ion  of t h e s e   r e l a t i o n s  i s  Tequired t o   f i n d  
the   co l lapse   p ressure  PC01 

A t  the   beginning of an in t eg ra t ion   fo r   t he   mo t ion  and  temperature   dis t r i -  
but ion of t h e   f l u i d   t h e   i n i t i a l   p r e s s u r e   p o ,   t a n k   q u a n t i t y ,  and  dimensionless 
tempera ture   d i s t r ibu t ion  Hjk are spec i f ied .  The tank   quant i ty  i s  defined t o  
b e   t h e   r a t i o  of f l u i d  mass I n   t h e   t a n k   t o   t h e   f l u i d  mass when the   t ank  i s  f u l l .  
Thus , t h e  mass of  oxygen i n   t h e   t a n k  i s  computed according t o  

= M f u l l  x Quanti ty  

Then 

(5.59) 

- 
P = M/Vo (5.60) 

The d is t r ibu t ion   func t ion  FN i s  a funct ion  of  TR; see the  discussion  fol low- 
ing   equat ion   (5 .40) .   Therefore ,   the   re la t ions  

- Nmax Nmax 

N= 1 N= 1 
P 1 F N =  1 F ~ P ~  

can  be  solved  for TR by i t e r a t i o n .  Once TR i s  known 

b a x  

N= 1 
- 1 FNPN 
p e  = 

I’Tmax 

FN N= 1 and 

(5.63) 

can  be  evaluated. 

Suppression of Nonphysical  Excursions  of  Temperature  and  Vorticity 

A t  an ea r ly   s t age   i n   t h i s   i nves t iga t ion  it was noted  that   the   numerical  
i n t eg ra t ion  method descr ibed   in   chapter  3 r e s u l t s   i n  small excursions  of tem- 
perature   outs ide  the  range  of   values  imposed i n   t h e  boundary  conditions. This 
probably  occurs  because  of  the  use of a coarse  grid  that   does  not  adequately 
resolve  the  heater   boundary  layer .  We have  described  methods for ensuring 
overal l   conservat ion of mass and energy. An addi t iona l  remedy has  been  adopted 
t o  suppress  nonphysical  excursions  of  temperature. 

In   s imulat ing a hea ter ,   hea te r   t empera tures  are computed a t  the  beginning 
of an integrat ion  for   each time s tep .   S imi la r ly  , w a l l  temperatures are 
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computed t o  account  for.   heater.   radiation  absorbed by t h e  w a l l s  and hea t   l eak  
through  the.wal ls . .  After these  computations  the  highest  and  lowest tempera- 
t u r e s  i n  the   en t i re   t empera ture  matrix ar'e found.  These limits are then 
imposed  on the   en t i re   t empera ture   mat r ix  p.t the   end   of   each   in tegra t ion   s tep  

1 s ince   t hey  are va l id   phys i ca l  limits. 

A similar type  of  nonphysical  behavior  can  occur  in  the  computation of 
v o r t i c i t y  due t o   t h e  failure of   the   coarse   g r id   to   reso lve   boundary   l ayers .  
Therefore,  upper  and  lower limits were imposed on t h e   v o r t i c i t y  matrix a t  t h e  
end   of   each   t ime  s tep   in   the  same manner as for   the   t empera ture .  When t h i s  w a s  
not  done, much la rger   va lues   o f   vor t ic i ty   occur red  at the.  boundaries  and  pro- 
duced osc i l l a t ions   i n   t he   f l ow  un le s s   t he  time s t e p  w a s  decreased.  Imposition 
of v o r t i c i t y  limits s t ab i l i zed   t he   f l ow and  allowed  long  computations t o   b e  
made. Fixed limits of   plus  or minus four  times t h e  magnitude  of the  uniform 
vor t i c i ty   co r re spond ing   t o  a r o t a t i o n   r e v e r s a l   s t a r t i n g  a t  three   revolu t ions  
per  hour were  imposed.  These limits were  chosen  because  they are beyond t h e  
extreme  values  observed at in t e r io r   po in t s   i n   t he   f l ow  fo r   t he   ca ses   i nves t i -  
gated.  There i s  no p h y s i c a l   j u s t i f i c a t i o n   f o r   v o r t i c i t y  limits a s   t he re  i s  f o r  
temperature limits. There i s  a phys ica l   i n t e rp re t a t ion   o f   t he   e f f ec t ,  however. 
Disturbances  that   extend  over  several   computational  grid  points  can  be computed 
correct ly ,   but   small -scale   dis turbances  that   cannot   be computed cor rec t ly   wi th  
a coarse   g r id  i n  any   case   a re   f i l t e red   ou t .  The flow i n   t h i n  boundary lavers 
and  near  the  corners of the  rectangular   enclosure w i l l  not  be computed cor- 
r e c t l y .  However, the   mix ing   ac t ion   tha t   occurs   in  the main  body  of t h e   f l u i d  
for times up to   s eve ra l   hour s  can  be  computed  and  should  provide a conservative 
est imate   of   the   mixing  that  would take   p lace   in  a spherical   tank  without  
corners .  

Effect   of  Changes in  Parameters 

Chapter 6 p re sen t s   r e su l t s  from a ser ies   of   calculat ions  based on t h e  
methods of t h i s  and the  preceding  chapters.  A 17 X 17 computational  grid- was 
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Figure 5.3.- Effect of changes in parameters (in all 
cases, flow rate = 1.5 lbm/hr, heat leak = 10 W, heater 
power = 115 W, rotation  rate = 0.4 rph except where 
noted, quantity = 90 percent except where noted). 

used   in   those   ca lcu la t ions   as   wel l  
as f ixed  values   of   several   o ther  
parameters. It i s  of i n t e r e s t   t o  
consider   the  effect   of   changing  the 
t o t a l  number of mesh points  and 
other  parameters.  

Figure 5.3 conta ins   p lo ts  of 
po ten t i a l   p re s su re  decay  versus t i m e  
du r ing   hea t e r   cyc l ing .   In   a l l   o f  
the   ca lcu la t ions   represented   the  
hea te r  i s  turned on when the   p re s -  
sure f a l l s  below 870 p s i a  due t o  gas 
removal  and  the  heater i s  turned  off  
when the p res su re   r i s e s  above 910 
ps ia .  A f low  ra te   of  1.,5 lbm/hr, a 
hea t   l eak  rate of 10 watts,, and a 
hea te r  power of 115 watts were 



imposed i n  a l l  of   the   ca lcu la t i ,ons .  A s teady   spacecraf t   ro ta t ion  rate of 0.4 
revolutions  per  hour was used,  except  where  noted,  and  the  tank  quantity 
( requi red   in   eq .  (5.59) ) was 90 percent   except   for  two cases a t  80 and 70 per- 
cent .  The quantity  decreases  by  about 1 Dercent i n  2 h r  when t h e  mass-flow 
r a t e  i s  1.5 lbm/hr . 

The potent ia l   pressure  decay rises when t h e   h e a t e r  i s  on and subsides when 
the   hea t e r  i s  o f f ,   b u t   t h e r e  i s  a cumulative  increase as t h e   l e v e l  of tempera- 
t u r e   s t r a t i f i c a t i o n   i n c r e a s e s .  It can  be  seen i n   f i g u r e   5 . 3   t h a t   t h e   h e a t e r  i s  
turned on and o f f  a number of   t imes  in   each  of   the  calculat ions shown. The 
pos i t ions   o f   the   four th  , seventh,  and t en th   peaks   a r e   l abe led   i n   t he   f i gu re  as 
an ind ica t ion   o f   t he   e f f ec t  of changes in   parameters  on the   ra te   o f   p ressure  
rise. S ince   the   p ressure   f luc tua tes   l inear ly   be tween 870 and 910 Bsia i n  a l l  
cases ,   the  time requi red   for  10  peaks i n   t h e   p o t e n t i a l   p r e s s u r e  decay i s  
i n v e r s e l y   p r o p o r t i o n a l   t o   t h e   r a t e  of p re s su re   r i s e .  This i s  i l l u s t r a t e d   i n  
sketch ( a ) ,  which shows pressure and po ten t i a l   p re s su re  decay  versus  time for 

two heat ing  cycles .  Note t h a t   t h e  rate 
o f   p re s su re   r i s e  due t o   h e a t i n g  i s  
reduced   by   the   t ank   s t re tch   e f fec t .  
The amount of   the  reduct ion i s  
i n v e r s e l y   p r o p o r t i o n a l   t o   t h e   r a t i o  of  
t imes  required  to   complete  a given num- 
ber  of  cycles.   Calculations.   with  and 
wi thou t   t he   t ank   s t r e t ch   e f f ec t   a r e  
compared in   t he   B lo t  at the   t op   o f   f i g -  

\ 
No tank  stretch 

Potentlol 
pressure 

decay 
-\- ure 5.3. m e   r a t i o  of  times  required 

-" t o   r e a c h   t h e   t e n t h  peak   ind ica tes   tha t  
Time t he   t ank   s t r e t ch   e f f ec t   dec reases   t he  

rate of   pressure  r ise   by a fac tor   o f  

a r igid  container .   In   unpubl ished work 
of   the  Propuls ion and Power Divis ion,  
NASA Manned Spacecraf t   Center ,   resul ts  

Sketch (a) 1 . 2 2 5   r e l a t i v e   t o   t h e   r a t e   o f  rise f o r  

were  obtained  showing  that  with  uniform  heating at 90 percent   quant i ty   the  cor-  
r e spond ing   r a t io   o f   r i s e   r a t e s  i s  1.563. Thus, we f ind   t he   t ank   s t r e t ch   co r -  
r e c t i o n   t o   b e   s m a l l e r   f o r  nonuniform s t r a t i f i e d   h e a t i n g   t h a n  it i s  for  uniform 
heat ing.  It can   a l so   be   seen   in   the   p lo ts  at the   top   o f   f igure  5.3 t h a t   t h e  
tank   s t re tch   e f fec t   t ends   to   suppress   the   cumula t ive   r i se  i n  po ten t i a l   p re s su re  
decay  but  does  not  counteract it completely.  Additional  information on t h i s  
point  .is supplied  by  comparison  of  potential   pressure  decays  with and  without 
t ank   s t r e t ch   fo r  an  assumed l inear   t empera ture   d i s t r ibu t ion   across   the   t ank .  
I n  a representa t ive   ca lcu la t ion  at, 90 percent   quant i ty   with a temperature 
spread  of 20° K ,  the   values   of   potent ia l   pressure  decay computed were 135 p s i  
wi th   t ank   s t re tch  and 208 p s i   f o r  a r ig id   con ta ine r .  Thus , t ank   s t r e t ch  
becomes more e f f e c t i v e  at h igher   l eve ls  of s t r a t i f i c a t i o n   i n   c o u n t e r a c t i n g   t h e  
bui ldup  of   potent ia l   pressure  decay  that  would  be  present i n  a r ig id   con ta ine r .  

Effects  of  changes in   o the r   pa rame te r s   can   be   no ted   i n   f i e r e   5 .3 .  Rota- 
t i o n  rate r e fe r s   t o   t he   s t eady   r a t e   o f   ro t a t ion   o f   t he   spacec ra f t   u sed   i n   t he  
ca lcu la t ion .  I n  each  case,   the   calculat ion was s t a r t e d   w i t h  a uniform  tempera- 
t u r e  and w i t h   t h e   f l u i d  at rest r e l a t i v e   t o   t h e   r o t a t i n g   t a n k .   I n  a l l  calcula-  
t i o n s   t h e   h e a t e r  was loca ted  at an off-center   posi t ion  descr ibed more 
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completely i n   c h a p t e r  6 ( f i g .  6.10). Five  computational  grid  points  forming 
a + were  used. as heater  elements.  A t  the  end of each time s t ep   i n .   t he .   i n t eg ra -  
t i o n ,   t h e  stream funct ion at these   f i ve   po in t s  w a s  set  equal  t o  the  average  of 
the   va lues  computed at t h e  five points  by  the  numerical  method of  chapter 3. 
This w a s  done for   the   purpose  of imposing  zero  velocity at the   cen ter   o f   the  
hea te r .  "Nonzero ve loc i ty  at h e a t e r "   i n   f i g u r e  5 .3  refers t o  a ca l cu la t ion   i n  
which t h e  stream funct ion was not   readjusted a t  heater  elements.  "Large hea te r  
.volume" ind ica t e s  a c a l c u l a t i o n   i n  which 13   po in t s  were  used as heater  elements 
r a the r   t han  five po in t s .  It can   be   seen   in   f igure   5 .3   tha t   use   o f   13   po in ts  
decreased  the computed po ten t i a l   p re s su re  decay  by  only a f a c t o r  of about  two. 
Most o f   t h e   c a l c u l a t i o n s   i n   t h i s   r e p o r t  were computed using 17 x 17 uniformly 
spaced   mat r ix   po in ts .   In   f igure   5 .3   resu l t s  are given  for  a 33 x 33  matrix 
t h a t  are t o   b e  compared wi th   the   s tandard   ca lcu la t ion   represented  by t h e   s o l i d  
curve i n   t h e   t o p   p l o t .  For   t ank   quant i t ies   l ess   than  90 percent   the  ra te   of  
pressure r ise and the   cumula t ive   r i s e   i n   po ten t i a l  pressure decay are smaller 
as shown i n   t h e   p l o t s  at the  bot tom  of   f igure  5 .3 .  
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SUMMARY 

The ef fec t iveness  of vehicle  maneuvering as a means for  producing  neces- 
sary mixing  in  the  Apollo oxygen tanks i s  inves t iga ted .  Results are presented 
from  numerical   simulation  of  f low  in  the  tanks  showing  the  effect   of reversal 
of   ro ta t ion  after a prolonged  period  of  rotation a t  a constant  rate. Results 
are given  from  calculations  corresponding  to  spin up of   the   vehic le  after a 
prolonged  period a t  zero   ro ta t ion  rate and  near-zero  acceleration.  Both maneu- 
v e r s   l e a d   t o  a reduct ion   in   po ten t ia l   p ressure   decay   by  a f a c t o r  of 2 or more. 
Photographs  of a cathode  ray  display  tube are p r e s e n t e d   i l l u s t r a t i n g   t h e  con- 
vect ion  currents   and  cumulat ive  bui ldup  of   potent ia l   pressure  decay  that  result 
from in t e rmi t t en t   ope ra t ion   o f   t he   hea t e r .  

INTRODUCTION 

In   t h i s   chap te r ,   r e su l t s   a r e   p re sen ted  from a series of   ca lcu la t ions  uti- 
l i z i n g   t h e  methods  developed in   preceding  chapters .   Prel iminary results based 
on t h e  van  der Waals equations  of state were  presented at meetings on t h e  
Apollo oxygen system  held a t  t h e  Manned Spacecraf t   Center   p r ior   to   the   Apol lo  
14 f l i g h t .  

Fol lowing  the  fa i lure   of   an oxygen tank  during  the  Apollo 13 f l i g h t  and 
the   subsequent   d iagnos is   o f   the   cause ,   in tens ive   e f for t s   in   the  areas of 
design,  development,   analysis,   and  testing were conducted t o  assure t h e  timely 
redesign  of  the  Apollo  cryogenic oxygen storage  and  supply  system. After t h e  
Apollo 14 f l i g h t  a symposium was organized at t h e  NASA Manned Spacecraf t  Center 
for   the  purpose  of   disseminat ing  the  information  acquired.   Seventeen  papers  
were  presented  under  f ive  categories:   hardware  development,   stratif ication 
ana lyses ,  system models, test  programs,  and f l ight   performance.  The papers 
were c o l l e c t e d   i n  an unpublished  document, MSC Cryogenics Symposium Papers. 
The r e l a t i o n s h i p   o f   t h e   p r e s e n t   i n v e s t i g a t i o n   t o   t h e   o v e r a l l   e f f o r t  i s  out l ined  
in   chapter  1. 

The recommendation of   the  Apollo 13 Review  Board tha t   t he   mix ing  fans be  
removed  from t h e  oxygen tanks w a s  adopted.  This  decision  and  the  subsequent 
redesign  studies  were  aided  by  data  acquired  from  the  Apollo 1 2  flight during 
which the   f ans  were not   used   for   an   apprec iab le   par t   o f   the  flight. Analysis 
o f   t ha t   da t a  was repor ted   in   unpubl i shed  work of C .  K. Fo res t e r ,  D.  D. R u l e ,  
and H. W. Pa t te rson .  O f  p a r t i c u l a r   i n t e r e s t  w a s  a period  from 4 t o  8 h r  after 
the  launch  during which the   f ans  were not  operated.  During most o f   t h i s  time 
very  l i t t le   spacecraf t   maneuvering  occurred,   and  the  effect ive  accelerat ion 
f i e ld  w a s  o f   o rder   ear th   g rav i ty .  It was found  that  a number of   p ressure  
decays  took  place  that  were co r re l a t ed   w i th   acce le ra t ions  due t o  maneuvering, 
which caused  spikes   of   accelerat ion  of   order  g l a s t i n g   f o r  several 
seconds. After a prolonged  period  of low acce lera t ion  a pressure  decay OR 140 
p s i  was observed a t  t h e  time of   an  accelerat ion  spike  that   reached a l e v e l   o f  
l o d 3  g. A s t r a t i f i ca t ion   ana$ys i s   based  on a two-dimensional  square-tank simu- 
la t ion  reproduced  these  effects   reasonably  wel l .  
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The analyses  of  Apollo 12 data ind ica t ed   t ha t  no s e r i o u s   s t r a t i f i c a t i o n  
problems  were to   be   expec ted  from  operation  of the oxygen tanks  with  the  mixing 
fans removed. It was concluded t h a t  normal  vehicle  maneuvering  could  be  relied 
on t o  produce  the  necessary  mixing.   Nevertheless ,   several   invest igat ions.were 
made of emergency  procedures tha t   could  'be used i f  the  performance  fe l l   below 
an acceptable level. The question was ra i sed   whether   reversa l   o f   the   ro ta t ion  
rate s t a r t i n g  a t  three  revolut ions  per   hour   ( rph)  would  provide  useful  mixing 
a c t i o n   i n   t h e  oxygen tanks.  An ana lys i s   o f   t he   s t r a t i f i ca t ion   u s ing  a two- 
dimensional model f o r   t h i s  problem i s  difficult   because  prolonged  motion of t h e  
f l u i d  leads to   the   requi rement   o f  a s m a l l  t ime   s t ep   t o   ach ieve  stabil i ty i n   t h e  
numerical  method.  Therefore,  approximate  methods  were  used i n i t i a l l y   t o   r e d u c e  
the   r equ i r ed  computing  time. From our   prel iminary  resul ts   based on t h e  van der 
TJaals equations it was concluded that spacec ra f t   ro t a t ion   r eve r sa l s  would 
indeed  provide  effective  backup means for  mixing  the oxygen i f  normally  occur- 
r i n g  maneuvers  proved t o  be insuff ic ient .   That   conclusion i s  of  continuing 
i n t e r e s t  for fu tu re   Apo l lo   f l i gh t s   i n  which vehicle  maneuvering i s  r e l i e d  on t o  
produce the  necessary  mixing  in   the oxygen tanks.  

I n   t h i s   c h a p t e r  w e  present   resu l t s   based  on the   accura te  thermodynamic 
re la t ions   deve loped   in   chapter  4. The e f f ec t s   o f   t ank   s t r e t ch   ana lyzed   i n  
chapter 5 are   accounted  for .  The equat ions   for  the f l u i d  motion  and  convection 
o f   hea t   u sed   i n   t he   ana lys i s   a r e   de r ived   i n   chap te r  2. The numerical method 
employed in   the   in tegra t ion   of   the   f lu id   mechanica l   equa t ions  i s  descr ibed   in  
chapter 3. Special  methods for   suppressing  cumulat ive  errors   that  were used   i n  
the   ca l cu la t ions  are descr ibed   in   chapter  5 .  O u r  preliminary  conclusions on 
the   mix ing   e f fec t iveness   o f   ro ta t iona l   spacecraf t  maneuvers a r e   v e r i f i e d  and 
put  on a firmer basis by t h e  results i n   t h i s   c h a p t e r .  The effects  of  changes 
i n   t h e  rate of   spacecraf t   ro ta t ion  on add i t iona l   t ypes   o f   s t r a t i f i ca t ion   a r e  
inves t iga ted .   Calcu la t ions  showing the   bu i ldup   o f   po ten t i a l   p re s su re  decay 
(the pressure  decay that would r e s u l t  from  complete  adiabatic  mixing)  during 
heater cycl ing are presented. 

M I X I N G  EFFECTIVENESS OF ROTATION REVERSAL 

Calculations  were made i n  which the   veh ic l e  was t a k e n   t o  be r o t a t i n g   i n i -  
t i a l l y  at 3 rph. A seri.es o f   i n i t i a l  s tratif ied states were imposed wi th   the  
temperature   varying  l inear ly   across   the  tank.  The h o t   f l u i d  was p l a c e d   i n   t h e  
s table   posi t ion  toward the cen te r   o f   ro t a t ion ,  which w a s  outs ide  the  tank.  
Such s t r a t i f i c a t i o n  can  be  expected t o  deve lop   a f te r  many heater   cycles  while 
operat ing  with a s teady   vehic le   ro ta t ion  rate. In   the  absence  of   other   vehicle  
maneuvering  and with the   hea t e r   t u rned   o f f ,   t he   ca l cu la t ions  show a very  slow 
decrease  in  potential   pressure  decay  and no  motion o f   t h e   f l u i d   r e l a t i v e   t o   t h e  
tank. The dec rease   i n   po ten t i a l   p re s su re  decay i n   t h i s   c a s e  i s  due t o  conduc- 
t i o n   a r i s i n g  from t h e  mild temperature  gradient.  When the d i rec t ion   of   ro ta -  
t i o n  i s  abruptly  reversed,  however, a swi r l ing  motion  of t he   f l u id   ensues ,  
leading  to  mixing  and  enhanced  temperature  gradients.   Figure 6.1 dep ic t s   t he  
ve loc i ty  f i e ld  i n   t h e   f l o w   t h a t  results. It comprises  photographs of a cathode 
ray   d i sp lay   tube  on  which  were p lo t t ed   t he   ve loc i ty   vec to r s  at t h e  computa- 
t iona l   g r id   po in ts .   Ske tch  (a )  shows t h e  dimensions  and  orientation  of  the 
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Figure 6.1 .- Velocity  vectors  after  rotation  reversal.  Sketch (a) 

two-dimensional  square-tank  model. As  i nd ica t ed ,   t he   t ank   ro t a t e s   coun te r -  
clockwise  in  the  plane  of  the  page  about a center   loca ted  at the   cen te r   o f   t he  
spacecraf t .  However, i n   t h e   c a l c u l a t i o n s  a coordinate  system is  used t h a t  i s  
f ixed   w i th   r e spec t   t o   t he   t ank  and the  center   of   rotat ion  remains  f ixed at a 
pos i t i on  1.5 tank diameters below the   cen ter   o f   the   t ank .   In  a l l  t h e  photo- 
graphs  of  figure 6 .1  and la ter  f i g u r e s ,   t h e   c e n t e r   o f   r o t a t i o n  i s  thus  below 
the   t ank   a s   i nd ica t ed   i n   t he   ske t ch .  The arrow on t h e  right in  the  photographs 
represents   the   pos i t ion   o f  a f ixed  star,  such as the   sun ,   w i th   r e spec t   t o   t he  
ro t a t ing   t ank .  Thus when t h e   r o t a t i o n   r a t e  i s  s t eady ,   t he  arrow provides an 
ind ica t ion   of   the   passage   o f   t ime.  This fea tu re  was u se fu l   i n   v i ewing   t he  
cathode  ray  tube  during  calculat ions or i n  motion  pictures of the   d i sp l ays .  
The upper l e f t  photograph i n  figure 6.1 shows t h e   f l u i d   v e l o c i t y   v e c t o r s   i n   t h e  
tank  immediately  af ter   rotat ion  reversal .  The magnitude of the   ve loc i ty   nea r  
the  tank  boundaries  i s  about 0.02 f t  sec'l. The clockwise  swirling  motion 
shown r e s u l t s   i n   p a r t  from the r o t a t i o n a l   i n e r t i a   o f   t h e   f l u i d ,  which t e n d s   t o  
r e t a i n   t h e  motion it possessed   before   the   ro ta t ion   reversa l   o f   the   vehic le .  A 
lateral  acce le ra t ion ,   p re sen t   du r ing   t he   r eve r sa l ,   a c t s   d i f f e ren t i a l ly  on t h e  
s t r a t i f i e d   l a y e r s   r e s u l t i n g   i n  a s i g n i f i c a n t   c o n t r i b u t i o n   t o   t h e   s w i r l i n g  
motion. The other   photographs  in   f igure 6 .1  show t h e   v e l o c i t y   v e c t o r s  at later 
t imes.  The off-center  swirl develops as a r e s u l t   o f   t h e   s t r a t i f i c a t i o n   p r e s e n t  
and moves cont inuous ly   in   the   c lockwise   d i rec t ion ,  which i s  a l s o   t h e   d i r e c t i o n  
of  motion  of  the  f luid.  

The graph at the  bottom  of  each  photograph  in  f igure 6.1 is a p l o t  of t h e  
po ten t i a l   p re s su re  decay  versus time from the  beginning  of   the  calculat ion.  
The s c a l e  i s  automatically  decreased when t h e   p l o t  becomes overextended.  In 



the   lower  r ight   photograph  the time scale  has  been  decreased  by a f ac to r   o f  2 
r e l a t i v e   t o   t h a t  i n  the  other  photographs.  

Figure  6.2 shows the  evolut ion  of   temperature   dis t r ibut ion i n  the   t ank .  
For   temperatures   greater   than  the  average,   the   deviat ions from t h e  mean temper- 
a tu re   a r e   r ep resen ted   by   ve r t i ca l   l i nes .  A s  an   a id   t o   v i sua l i za t ion ,   fo r  tem- 
peratures   less   than  average  the  deviat ions from t h e  mean a re  shown as horizon- 
t a l  l i nes .   In   e i t he r   ca se ,   t he   l eng th   o f   t he   l i nes   i nd ica t e s   t he  relative 
magnitude  of the  temperature   deviat ion from t h e  mean at each  computational  grid 
poin t .  The upper l e f t  photograph in   f i gu re   6 .2  shows t h e   i n i t i a l  assumed 
l inear   t empera ture   d i s t r ibu t ion .  The hot  gas i s  toward   the   cen ter   o f   ro ta t ion .  
The remaining  photographs show tempera ture   d i s t r ibu t ions  at l a t e r   t i m e s   a f t e r  
mixing  has  resulted from the  swirling  motion. 

I n  figure 6.3 t h e r m a l   s t r a t i f i c a t i o n  i s  viewed d i f f e r e n t l y .  The tempera- 
tu re   d i s t r ibu t ion   func t ion   descr ibed   in   chapter  4 (following  eq.  (4.24))  and i n  
chapter 5 (preceding  eq. (5.13)) i s  d i s p l a y e d   i n   t h e  form of  histograms  that  
i n d i c a t e   t h e  number of  computational  grid  points  with  temperatures  within lo K 
i n t e r v a l s .  The unf i l led   h i s togram  represents   the   in i t ia l   l inear   t empera ture  
d i s t r i b u t i o n .  Gaps appear  between  the  bars due t o   t h e   d i s c r e t i z a t i o n   u s e d   i n  
the  numerical  method.  That i s ,  every  other lo K in t e rva l   d id   no t  happen t o  
contain  temperatures  occurring a t  the   computa t iona l   g r id   po in ts   in   the  imposed 
l inear   t empera ture   var ia t ion   across   the   t ank .  The bars  at 130° and 170° K a re  
ha l f   the   s ize   o f   the   o thers   because   the   computa t iona l   g r id   po in ts  at the   t ank  
boundaries are g iven   ha l f   the   weight   o f   in te r ior   po in ts ,  which represent  twice 
as much f l u i d  volume. During a calculat ion  the  temperatures  change due t o  con- 
vection  and  conduction  of  heat.  The he ights   o f   the   bars  change  and t h e  gaps 
are f i l l e d   i n .  The shaded  his togram  in   f igure  6 .3  shows the   t empera ture   d i s t r i -  
but ion 40 min a f t e r  a r o t a t i o n   r e v e r s a l  maneuver when considerable  mixing  has 
taken  place  and  the  steep  temperature  gradients  that   developed  have  reduced  the 
temperature  deviations from the  average.  If complete  mixing  were t o   t a k e  
place,   the   temperatures  at all computat ional   gr id   points  would f a l l   w i t h i n   t h e  
same lo K i n t e r v a l  and the  his togram would become a s i n g l e   b a r  at t h a t  tempera- 
t u r e .  A s  a supplement t o   t he   po ten t i a l   p re s su re   decay ,   h i s tog rams   o f   t h i s   t ype  
provide  addi t ional   quant i ta t ive  information on t h e   s t r a t i f i c a t i o n   p r e s e n t   i n  
t he   t ank .  

I n  a preliminary  unpublished  paper we have shown that   under   cer ta in   condi-  
t ions   the   decrease   in   po ten t ia l   p ressure   decay  due t o  a r o t a t i o n   r e v e r s a l  
according t o  a ca lcu la t ion   based  on t h e  van  der Waals equations i s  i n  rough 
agreement  with  results  based on  more exact thermodynamic r e l a t i o n s .  However, 
such  agreement i s  not  obtained i n  a l l  cases   o f   i n t e re s t ,  as i l l u s t r a t e d  by a 
comparison  of  figures 6.4 and 6.5. Figure 6.4 shows p lo t s   o f   po ten t i a l   p re s -  
sure decay  versus   the  magni tude  of   l inear   temperature   var ia t ions  for   several  
tank  pressures   according  to   the van der Waals equations.   Figure 6.5 shows 
results f o r   t h e  same conditions  based on the   accura te  thermodynamic r e l a t i o n s  
of  Stewart as descr ibed   in   chapter  4.  It i s  eas i ly   s een   t ha t   t he  van  der Waals 
resu l t s   d i sagree   g ross ly   wi th   those   based  on Stewart ' s   equat ions at both low 
and   h igh   l eve l s   o f   s t r a t i f i ca t ion .  Our preliminary  conclusions on the  mixing 
ef fec t iveness   o f  a spacec ra f t   ro t a t ion   r eve r sa l   a l t hough   qua l i t a t ive ly   co r rec t  
are put on a f i rmer   bas i s   by   t he   ca l cu la t ions   u t i l i z ing   accu ra t e  thermodynamics 
i n   t h i s   c h a p t e r .  
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Figure 6.2.- Temperature  distributions  after  rotation 
reversal. 

Initial 40 mln 
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Figure 6.3.- Temperature  distribution  functions. 
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Figure 6.4.- Potential pressure decay for linear 
temperature variations;  van der Waals equations. 

Figure 6.5.- Potential pressure decay for linear 
temperature variations;  Stewart's equations. 

The sharp  bends  in   the  curves   contained  in   f igure 6 .5  a re   o f   i n t e re s t .  
The f l a t t en ing   ou t  takes place when a l e v e l   o f   s t r a t i f i c a t i o n  i s  reached for 
which the  col lapsed state t h a t  would r e s u l t  from  complete  adiabatic  mixing con- 
t a i n s  a two-phase  mixture  of  liquid and vapor. Many o ther   in te res t ing   aspec ts  
of the  behavior  of  cryogenic oxygen are i l l u s t r a t e d   i n   t h e  thermodynamic  prop- 
e r ty   p lo t s   p re sen ted   i n   chap te r  4. 

Initral  pressure  9VOpsia 
Mean temperature 150°K Figure 6.6 shows p l o t s   o f  

Init ial  rotation  rate  3rph 

Heat leak 0 time af ter  ro t a t ion   r eve r sa l  
Heater power 0 f o r  f o u r   i n i t i a l   l e v e l s   o f  

"_ 
500- Flow rate 0 

Courant No.= 0.4 
Courant No.- 0.8 - potent ia l   pressure  decay  versus  

s t r a t i f i c a t i o n .  The s t a r t i n g  
values   of   potent ia l   pressure 
decay i n   t h e s e   p l o t s  can  be 
obtained from f igu re  6 .5 .  
Decreases in   po ten t i a l   Dres su re  
decay  by a factor  of  about 2 or 
more r e s u l t  from a change i n  
rate of  spacecraf t   ro ta t ion  
from 3 rph t o  -3 rph. 

m 
I I I I I 

0 IO 2 0  30 40 50 60 
The Courant number apDiic- 

Tlme  after  rotation  reversal,  min ab le   t o   t he   numer i ca l   i n t eg ra -  
t ion  procedure  used i n  t h e  

Figure 6.6.- Potential pressure decay after  rotation reversal. present   calculat ions  given  in  
equation ( 3 . 2 8 )  can  be  wri t ten 

IUI A t  
Ax a =  

where IUI i s  t h e  maximum speed  present i n   t h e   f l o w ,  A t  t h e  time s t e p ,  and 
Ax the  spacing  between  computational  grid  points  in  both x and y d i r ec t ions .  
As  discussed  in   chapter  3, t h e  Courant number i s  a measure of t h e   s t a b i l i t y  and 
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accuracy  of  the  numerical   integration  procedure.  Most o f   t he   ca l cu la t ions   i n  
t h i s   r e p o r t  were made with a value of a = 0.8. Case I of   f igure  6.6 w a s  also 
computed with a = 0.4 (and smaller t i m e  steps  according t o  eq. (6 .1 ) )  as indi -  
cated  by the dot ted  l i n e .  Comparison of the dot ted   and   so l id  l i n e  curves for 
case I i n   f i g u r e  6.6 shows t h a t   t h e   p r e d i c t e d   v a r i a t i o n  of  po ten t i a l   p re s su re  
decay  with time i s  i n s e n s i t i v e   t o  such a change i n   t h e  Courant  number. Amre- 
c i a b l e   v a r i a t i o n s   i n  the flow  variables  extend  over  several  computational  grid 
points   except   in   the  boundary  layer  a t  t h e  w a l l ,  which  remains  relatively  thin 
during  computation times considered  here.  Therefore,  changes  in  the  boundary 
l a y e r  do not   s ign i f icant ly   a f fec t   the   evolu t ion   of   the   po ten t ia l   p ressure  
decay,  which  depends on cond i t ions   i n   t he  main b u l k   o f   t h e   f l u i d ,   i n   t h e   r o t a -  
t ion  reversal   problem. For t h i s   r ea son ,  the  r e s u l t s  are i n s e n s i t i v e   t o  a 
change in   g r id   spac ing  from a 1 7  x 17 matrix to a 33 x 33  matrix. To save com- 
put ing time, t h e  la t ter  computations  were a l s o  made with a Courant number 
c1 = 0.8. 

M I X I N G  EFFECTIVENESS  OF-SPINUP  AFTER ATTITUDE HOLD 

I n   t h e   p r e v i o u s   s e c t i o n ,   i n i t i a l   s t r a t i f i e d  states were  considered  that 
could  be  expected t o   r e s u l t   a f t e r  many heater   cycles   with the spacecraf t   ro ta t -  
ing  a t  a s t eady   r a t e  ( t he  so-called  "passive  thermal  control mode").  Another 
case  of   interest  i s  t h e   t y p e   o f   s t r a t i f i c a t i o n   t h a t  would r e s u l t  a f te r  many 
hea ter   cyc les   in  a nonro ta t ing   s t a t e   ( a t t i t ude   ho ld  mode). In  the  absence  of 
vehicle  maneuvering,  no  convection  currents  would  develop and the  heat from t h e  
hea ter  can  spread  into the gas  only  by  conduction. A localized  hot  spot  around 
the   hea t e r  somewhat diffused by  conduction  and e s s e n t i a l l y   z e r o   f l u i d   v e l o c i t y  
a r e   t o  be expec ted   in   th i s   case .  It i s  of   in te res t   to   de te rmine  the mixing 
effect iveness   of  a spinup t o  a s teady   ro ta t ing  s ta te  from  such  an i n i t i a l  s t ra t -  
i f i e d  s ta te .  In  the  coordinate  system  fixed  with  respect  to  the  tank,  changes 
i n   r o t a t i o n  rate cause a rotating  motion of t h e   f l u i d .  The ve loc i ty  f i e l d  t h a t  
occurs as a r e s u l t  of  spinup i s  similar t o  t ha t  shown in   f i gu re  6.1.  Figure 
6.7 i l l u s t r a t e s   t h e   e f f e c t  of  spinup on the  temperature   dis t r ibut ion.  It 
should  be  recalled  that   posit ive  temperature  deviations  (from  the mean tempera- 
t u r e )  are shown as v e r t i c a l   l i n e  segments  and negative  deviations are shown as 
horizontal   l ine   segments .  The upper l e f t  photograph shows t h e   i n i t i a l  assumed 
dis t r ibut ion.   Subsequent   dis tor t ions  and  diss ipat ion  resul t ing from the  
swirling  motion  are shown in  the  remaining  photographs.  

Figure 6 .8  i s  a p lo t   o f   po ten t i a l  pressure decay  versus  time after spinup. 
For  comparison, a p l o t  i s  included  showing  the  very  s low  decrease  in   potent ia l  
pressure  decay tha t  occurs as a r e s u l t  of  conduction when t h e   a t t i t u d e   h o l d  
condition i s  maintained. Again it i s  found t h a t  a change in   veh ic l e   ro t a t ion  
rate provides  effective  mixing  action. 

HEATER CYCLE 

A pressure  sensor  
automatical ly   turn  the 

i s  i n s t a l l e d   i n   t h e  Apollo oqgen   t anks  and i s  used t o  
hea ter  on  when the   p ressure  drops below a lower l i m i t  of 
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16 rnin 31 min 
. 

Time after spin up, rnln 

Figure 6.7.- Temperature distributions after spinup. Figure 6.8.- Reduction in potential pressure decay due 
to spinup. 

about 870 p s i a  as a result of  gas  removal or pressure  decay due t o  mixing. The 
hea ter  i s  automatical ly   turned  off  when the   p re s su re   r i s e s  above  an  upper l i m i t  
of about 930 p s i a  due t o   h e a t i n g .  A s  d iscussed  in   chapter  5 our machine  pro- 
gram conta ins   op t ions   for   s imula t ing   the   hea te r   in   e i ther  of two ways. One 
method u t i l i z e s  a segment of   the  tank wall as a hea ter .   In   the   o ther  method, 
selected  internal   computat ional   gr id   points  can b e   u t i l i z e d  as heater  elements 
t o  more near ly   correspond  to   the  actual   posi t ion  of   the  heater  i n  an Apollo 
oxygen tank. 

The photographs  of  figure 6.9 show the   ve loc i ty  and temperature  distribu- 
t i o n s  produced by cycl ic   operat ion  of   the two types  of  heater.  The p l o t s  a t  
t h e  bottom of each  photograph show the   va r i a t ions  i n  po ten t i a l   p re s su re  decay 
t h a t  have taken  place  since  the  beginnings  of  the  calculations.  -Then t h e  
hea ter  i s  on ,   the   po ten t ia l   p ressure   decay   r i ses  , and when the   hea te r  i s  o f f  , 
it subsides , but   there  i s  a cumulative  increase. About 2 h r   ( r e a l   t i m e )  have 
elapsed  s ince  the start of   the   ca lcu la t ion  a t  the  t ime  of  the  photographs.  
During that  time  about  six  heater  cycles  have  been  completed.  Additional 
information on the  parameters  of  the  calculations i s  given in   the   d i scuss ion   of  
subsequent  figures. 

The upper l e f t  photograph i n  f igure  6.9 shows the   ve loc i ty   vec tors   resu l t -  
ing  from operation of a h e a t e r  on t h e   l e f t  w a l l .  The upper  right  photograph 
shows the  temperatures a t  the  computational  grid  points.  The temFerature of 
ho t   f l u id  i s  represented by v e r t i c a l   l i n e  segments and the  temperature   of   f luid 
cooler  than  average i s  ind ica ted  by hor i zon ta l   l i nes .   In   e i t he r   ca se ,   t he  
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Figure 6.10.- Pressure cycles for square  tank with wall 
heater (0.4 rph). 

Tlme, mm 

PYP, l eng th   o f   t he   l i ne  segment repre- 
sents   the  deviat ion  of   the  temper-  

Each t ime  the   hea te r  i s  turned 
Figure 6.9.- Velocity and  temperature distributions off  the  reference  temperature 

Time Time 
Internal  heoter( indicated by 0 on photo) a ture  from a reference  value.  

resulting  from  heater operation (0.4 rph). used i n   t h e   d i s p l a y  i s  readjusted 
t o   t h e   v a l u e   o f  t h e  mean tempera- 
t u re   i n   t he   t ank .   Th i s  i s  done s o  
t h a t   h o t   f l u i d  can be   ea s i ly   d i s -  
t inguished from  cold f l u i d   i n   t h e  
displays shown. For comparison I) 
the   ve loc i ty  and  temperature  dis- 
t r i b u t i o n s   a r i s i n g  from operation 
of   an   in te rna l   hea te r   a re  shown i n  
the  lower two photographs  of 
f i gu re  6.9. 

Figures 6.10 and 6.11 contain 
p lo ts   o f   p ressure  and p o t e n t i a l  
pressure  decay  for   the two h e a t e r  

r o t a t i o n   r a t e   o f  0 .4  rph w a s  
0 20  40 60 80 I 0 0  120 I40 I60 pos i t ions .  A s teady  spacecraf t  

Tlme, mm 

Figure 6.1 1.- Pressure cycles for square  tank with imposed.  Additional  parameters  of 
internal  heater (0.4 rph). the   ca lcu la t ions   a re   ind ica ted  on 

the   f i gu res .  The notat ion 
QUANTITY = 90 percent   ind ica tes   tha t   the   t ank   conta ins  90 percent  of  the amount 
of f l u i d  it contained when f u l l .  FLOW RATE = 1 . 5  lbm/hr r e f e r s   t o   t h e   r a t e  of 
f l u i d  removal  from the   t ank .  HEAT LEAK - 10 W ind ica tes  that  heat i s  leaking 
i n t o   t h e   f l u i d  from t h e   e x t e r i o r  of the   t ank  a t  the  rate of 10 W .  When t h e  
h e a t e r  i s  on it produces  heat at t h e   r a t e  of 115 W. The pressure rises due t o  
heat ing when t h e   h e a t e r  i s  on and fa l ls  due t o  gas  removal when the   hea te r  i s  
o f f .  Upper and  lower  pressure limits were  imposed corresponding t o  da ta  from 
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portions  of  the  Apollo 14 f l i g h t .  The reswts i n   f i g u r e  6.10 were generated 
using a wall h e a t e r ,  and the   ca lcu la t ion   represented   by  figure 6.11 was iden t i -  
cal   except   for   the  use  of  an i n t e r n a l   h e a t e r   p o s i t i o n .  Comparison of  t h e  two 
figures shows t h a t   t h e r e  are no gross   d i f fe rences   a r i s ing   f rom  the   pos i t ion   o f  
t h e   h e a t e r f o r   t h e   c o n d i t i o n s   o f   t h e s e   c a l c u l a t i o n s .  

Figure  6.12  contains  photographs  showing  velocity  and  temperature  fields 
produced  by  prolonged  heater  cycling  of  an  internal  heater  with  the  spacecraft  
r o t a t i n g  a t  a steady rate of 0.4 rph. The upper  photographs were taken at a 
time corresponding  to   about  8 h r  af ' ter   the start  o f   t he   ca l cu la t ion  and t h e  
t ime  of   the lower photograph i s  10 h r .  The velocit ies  remained small ( l e s s  
t h a n   f t / s e c )  so  t h a t   t h e   s t a b i l i t y   c r i t e r i a  of the  numerical  method 
allowed a la rge   t ime  s tep  (0.5 min) i n   t h e   i n t e g r a t i o n .  The t o t a l  computing 
time on an IBM 360-67 computer was 46 min. The photographs  of  temperature  dis- 
t r i b u t i o n  on t h e   r i g h t   o f  figure 6.12  are somewhat similar t o   t h e  assumed i n i -  
t i a l   l i n e a r   d i s t r i b u t i o n s '   u s e d   f o r   p r e v i o u s   c a l c u l a t i o n s   i n   t h i s   a r t i c l e .  With 
prolonged  heater   cycl ing  during  s teady  spacecraf t   rotat ion,  it i s  seen   t ha t  
t he re  i s  a tendency  for  the  hot  gas  (represented by v e r t i c a l   l i n e   s e g m e n t s )   t o  
co l l ec t   a t   t he   bo t tom of the   t ank   i n   t he   d i r ec t ion   o f   t he   cen te r   o f   ro t a t ion .  
On the  plots   of   potent ia l   pressure  decay at the  bottom  of  each  photograph i n  
f igu re  6.12, i n  the  lower two frames the   t ime   s ca l e   has   been   ha lved   r e l a t ive   t o  
t ha t   i n   t he   uppe r  two frames.  These  plots show tha t   t he   cumula t ive   r i s e   i n  
po ten t i a l   p re s su re  decay  does  not  continue  indefinitely when the   spacec ra f t  i s  
ro t a t ing .   In s t ead  a p la t eau  is reached when the   ve loc i ty   pas t   t he   hea t e r   has  
b u i l t  up s u f f i c i e n t l y   t h a t   t h e  incoming hea t  i s  convected to   o ther   reg ions   o f  
t h e  tank ra ther   than   cont inuing   to   accumula te   in  a small region  near   the 
hea ter .  A s  t h i s   na tu ra l   convec t ion   e f f ec t   con t inues   t o  grow, t h e r e  i s  a 

IO hrs was n o t   r o t a t i n g   i n i t i a l l y .  The 
Figure 6.12.- Velocity  and  temperature  distributions cyc l ic   hea te r   opera t ion   resu l ted  

after  prolonged  heater  cycling  at 0.4 rph. 
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i n  a rise of   potent ia l   pressure  decay 

._ 
loo - Quantity 90% t o  a l e v e l  above 100 p s i .  A t  a rea l  

v) a - Flow  rote  1.5lbm/hr ’ 
? 

~ 6o 

Heal leak IOW time 260  min a f te r  t h e  start  of   the  
- Heater power 115W 
- Initio1 rotation  rate  Orph 
- Final  rotation  rate 3rph t i a t e d  and  completed i n  about 10 min. 

ca lcu la t ion ,  a spinup t o  3 rph w a s  i n i -  

3 
u) The r o t a t i o n  rate was held  s teady 

0 change i n   s p a c e c r a f t   r o t a t i o n  rate 
the rea f t e r .   F igu re  6.13 shows t h a t   t h e  

r e s u l t e d   i n  an  appreciable  decrease  in 
Spin up the   po ten t ia l   p ressure   decay .  The 

I I forced  convection  introduced  by  the 
0 40 80 I20 160 zoo 240 280 320 maneuver e n t a i l s   l a r g e r   f l u i d   v e l o c i -  

Time, min 
t i e s  than   those   a r i s ing  from n a t u r a l  

Figure 6.13.- Effect of spinup on cumulative rise in convection in   the   p rev ious   case  con- 

ve loc i t i e s   pe r s i s t   r a the r   t han   be ing  
suppressed  by  accumulations  of  hot 
f l u i d  on t h e  side of the  tank  toward 

the  center   of   rotat ion.   Consequent ly ,   the   potent ia l   pressure  decay would be 
expected to   con t inue   t o   dec rease  i f  the  calculation  had  been  continued  to 
longer   t imes.  The machine  computing time on t h i s  run was 64 min. About  two- 
t h i r d s  of that  time w a s  s p e n t   i n   t h e   p a r t   o f   t h e   c a l c u l a t i o n   a f t e r   t h e  change 
i n   r o t a t i o n  ra te .  A s  a r e su l t   o f   t he  maneuver t h e   v e l o c i t i e s  became r e l a t i v e l y  
l a rge  (-0.005 f t / s e c ) ,  and the  s i z e  of time s tep   requi red   for   numer ica l   s tab i l -  
i t y   dec reased  by more than  an  order  of  magnitude. 

potential pressure decay. sidered.  Furthermore , t hese   l a rge r  

DISCUSSION 

It i s  appropr ia te   to   d i scuss  t h e  probable  effect   of  several   approximations 
tha t  were employed i n   t h i s   i n v e s t i g a t i o n .  Two-dimensional simulation  of the  
flow i n  a spherical   tank w a s  necessi ta ted  by t h e  l imited speed and s torage 
capaci ty   of   the   current ly   avai lable   computat ional   faci l i t ies .  If a highly 
s t r a t i f i ed  s t a t e  i s  p re sen t   i n  the  tank  with an appreciable   f ract ion  of  the 
oxygen a t  a temperature 10’ or more above the  average  temperature, a small t e m -  
perature   gradient  w i l l  develop. Due t o   t h e  low thermal   diffusivi ty   of   cryo-  
genic  oxygen,  such a nonuniform  condition  can  persist  for many hours i f  the  
flow  velocity i s  negl ig ib le .  The f luid  veloci ty   induced  by  spacecraf t  maneu- 
ver ing w i l l  l e ad   t o   pene t r a t ion   o f  the  h o t   f l u i d  by cold streams and lengthen 
the  boundary  between  hot  and  cold  regions. The enhanced  temperature  gradients 
and  lengthened  regions  of heat exchange  promote a more rapid  trend  toward a 
uniform  temperature. The e x t e n t   t o  which t h i s   o c c u r s   i n  a two-dimensional s imr  
d a t i o n   s h o u l d   b e   i n d i c a t i v e   o f   t h e  same t r e n d   i n  the actual  three-dimensional 
flow i f  t he   d r iv ing   fo rce  i s  i n  the  d i r ec t ion   o f   t he  two  dimensions  considered. 
There i s  no  apparent  reason to   expec t  a large  order-of-magnitude  error   in   the 
estimate of  mixing  effectiveness  from  the  two-dimensional  calculations.  

It was not   poss ib le   to   adequate ly   reso lve   the   thermal  and  viscous  boundary 
layers t h a t  would  occur i n  a real flow. Estimates based on the  viscous  f low 
over a f la t  p l a t e   i nd ica t e   t ha t   t he   boundary  layer  at t he   t ank  w a l l  due t o  



changes i n   r a t e  of   spacecraf t   ro ta t ion  would be  laminar. Also t h e  boundary 
l a y e r  would not encompass an apprec iab le   f rac t ion  of t h e   f l u i d   i n   t h e   t a n k   f o r  
periods up t o  2 h r   a f t e r  a change i n  rate o f   r o t a t i o n ,  i f  t h e   f l u i d  were i n i -  
t i a l l y  at r e s t   r e l a t i v e   t o   t h e   t a n k .  During  such  t imes,   the  calculations show 
appreciable  mixing i n  t h e  main  body o f   t h e   f l u i d  due t o   i n t e r a c t i o n  of t h e  
acce le ra t ion   f i e ld   w i th   t he  nonuniform  densi ty   dis t r ibut ion i n  t h e   s t r a t i f i e d  
f ie ld .   Therefore ,  it i s  no t   eqec ted   t ha t   accu ra t e   t r ea tmen t   o f   t he  boundary 
layer at t h e  wall would appreciably  a l ter   our   predict ions  of   the   response of 
t h e   p o t e n t i a l   p r e s s u r e  decay t o   s p a c e c r a f t  maneuvers. The thermal  and  viscous 
boundary  layer  that   develops at t h e   h e a t e r  was also  not  adequately  resolved i n  
our ca lcu la t ions .  However, t h e  nonuniform  temperature  distributions  produced 
by the  approximate  heater  simulation  provide  worthwhile tests of t h e  mixing 
effectiveness  of  spacecraft  maneuvers. 

An objection  can  perhaps  be  raised t o   t h e   u s e   o f  a coarse  computational 
g r id   spac ing .   Phys ica l   i n s t ab i l i t i e s  may develop i n  t h e  boundary  between  hot 
and  cold  regions  of a moving f luid.   General ly ,  it i s  no t   poss ib l e   t o   d i s t i n -  
guish  such an occurrence  from a numer ica l   ins tab i l i ty .   Spec ia l  methods t h a t  
have  been  used t o   c o n t r o l   t h e   n u m e r i c a l   s t a b i l i t y  may therefore  have  eliminated 
physical ly  real effects .   In   that   case,   the   calculat ions  should  provide a con- 
servat ive  es t imate   of   the   mixing  effect iveness   of  a spacecraf t  maneuver. 

Because  of the  previous  existence  of  numerical methods for  computation o f  
f l u i d  flows i n  rectangular   enclosures ,  it was expedient to   cons ider  first t h e  
flow i n  a rotat ing  tank  of   square  cross   sect ion.  The coarse  grid  spacing and 
t h e   s p e c i a l  methods  employed t o   c o n t r o l   s t a b i l i t y  may have  obscured  physically 
r e a l   e f f e c t s   t h a t  would occur  near  the  corners  in an a c t u a l   f l u i d   f l o w   i n  a 
rotat ing  enclosure  of   square  cross   sect ion.  The e r r o r  from  such e f f e c t s  would 
be  expected t o  grow with  time and could  be  appreciable  for  long  computation 
t imes.  For the  present  purpose,   omission  of  such  corner  effects i s  not  objec- 
t ionable   s ince  our purpose i s  to   s imula te   the   f low  in  a spherical   tank  without 
corners.  We have  developed a machine  program f o r  computing the  two-dimensional 
f low  in  a rotat ing  tank  of   c i rcular   cross   sect ion.   Prel iminary  resul ts  from 
t h a t  program  were presented  in  unpublished  reports a t  t h e  MSC Cryogenics Sym- 
posium. No gross  differences were  found in   predict ions  of   the   mixing  effec-  
tiveness  of  changes i n  spacecraf t   ro ta t ion   ra te   based  on ca l cu la t ions   fo r  
square or circular   cyl indrical   tank  geometr ies .  

The present   invest igat ion  has   Seen  confined  to   large  tank  quant i t ies  
( l a rge   va lues   o f   t he   r a t io   o f   f l u id  mass t o   t h e  mass when the  tank i s  f u l l ) .  
Unpublished work of C .  K .  Forester  , D .  D.  Rule , and H.  W .  Patterson  has shown 
tha t   t he   l eve l s   o f   po ten t i a l   p re s su re  decay to  be  expected  decrease  rapidly 
with  decreasing  tank  quant i ty   for   values   of   tank  quant i ty  below  about 70 per- 
cent .   This   occurs   because  of   the  departure   of   the   f luid  s ta te  from the  prox- 
imi ty   o f   t he   c r i t i ca l   po in t  as f l u i d  i s  removed from the   t ank  and t h e   f l u i d  
density  decreases.  A t  a tank  quantity  of 10 percent   the  propert ies  of oxygen 
are  approximately  those  of a thermally and c a l o r i c a l l y   p e r f e c t  gas for which 
the  potent ia l   pressure  decay i s  zero  regardless o f  the   degree   o f   s t ra t i f ica-  
t i o n .  For th i s   reason ,  from the  operational  point  of  view,  the  response  of  the 
f l u i d   s t a t e s   t o   s p a c e c r a f t  maneuvers i s  o f   g rea t e r   i n t e re s t  when the  tank 
quant i ty  i s  la rge .  
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CONCLUDING REMAFXS 

The ef fec t iveness   o f   ro ta t iona l   spacecraf t  maneuvers as a means for   pro-  
ducing  necessary  mixing i n  the Apollo oxygen tanks has been   inves t iga ted .  
Photographs  of a cathode ray display  tube  have  been  presented  i l lustrat ing  the 
convection  current's  resulting  from  changes i n  ra te  of  rotation  and from n a t u r a l  
convection.  Results  have  been  presented  showing  the  cumulative  buildup  of 
potent ia l   pressure  decay  that   occurs  due t o   i n t e r m i t t e n t   o p e r a t i o n   o f   t h e  
hea te r   u sed   t o   ma in ta in   t he   p re s su re   i n   t he   t ank   du r ing  removal of  f l u i d .  

There are several s ign i f icant   cont r ibu t ions  from the   p re sen t   i nves t iga t ion  
toward a bet ter   understanding  of   condi t ions  in   the  Apollo oxygen tanks  during 
f l i g h t .  We f i n d   t h a t   t h e  mixing  due t o   i n t e r a c t i o n   o f   f l u i d   d e n s i t y   g r a d i e n t s  
w i th   t he   acce le ra t ion  f i e l d  from ro ta t iona l   spacec ra f t  maneuvers t akes   p l ace   i n  
times t h a t  are s h o r t  compared to   those   requi red   for   mix ing  due t o  viscous 
e f f e c t s .  For example,  unpublished  results  from water tank  simulation  experi-  
ments  of J.  F. Lands, Jr. , and R .  C .  Ried, Jr. , i n d i c a t e   t h a t  times of  order 4 
t o  20 h r  a re   r equ i r ed   fo r  t h e  e f f ec t s   o f  a s p a c e c r a f t   r o t a t i o n   r e v e r s a l   t o  
spread  throughout the  bulk  of t h e  f l u i d .   I n   c o n t r a s t ,   o u r   r e s u l t s  , which 
inc lude   t he   e f f ec t s   o f   dens i ty   g rad ien t s  , show considerable  mixing  throughout 
t h e   f l u i d  volume i n  less  than 1 h r .  For  reasons  previousiy  discussed,  our  cal- 
culat ions  represent  a conservat ive  es t imate   of   the  amount of  mixing t o  be 
expec ted   i n   ac tua l   f l i gh t .  

The l eve l s   o f   po ten t i a l   p re s su re   decay   t o   be   an t i c ipa t ed   acco rd ing   t o   ou r  
ca l cu la t ions  are in  reasonable  agreement with previous estimates from Apollo 12 
da t a   and   s t r a t i f i ca t ion   ana lyses .  We concur in   the   conclus ion  that  dangerous 
l e v e l s  of s t r a t i f i c a t i o n  w i l l  not  occur  with mass flow rates and acce le ra t ion  
f ie lds  corresponding t o   p a s t  and an t ic ipa ted   Apol lo   opera t iona l   p rac t ices .  If 
as a resu l t   o f   depar tures  from usua l   p rac t i ce ,  an unacceptable   level   of  s t ra t i -  
f i c a t i o n  i s  b e l i e v e d   t o   e x i s t   d u r i n g   f l i g h t ,  w e  f i n d  tha t  r e t u r n   t o  a safe 
level  can  be  achieved by mi ld  changes i n  the  ra te  of   spacecraf t   ro ta t ion .  A 
change i n   r o t a t i o n   r a t e  of three  revolutions  per  hour  produces a reduct ion   in  
potent ia l   pressure  decay by a f ac to r   o f  2 or more i n  1 h r .  Again, t h i s   r ep re -  
s en t s  a conservative  estimate.  

In   the   event   o f   fu ture   space- f l igh t   appl ica t ions  tha t  r e q u i r e   s c a l i n g  of 
the  Apollo  design wi th  r e s p e c t   t o  time or s i z e ,  the  computational methods of  
t h i s   r e p o r t  are a p p l i c a b l e   f o r   e s t i m a t i n g   t h e   l e v e l s   o f   s t r a t i f i c a t i o n  and t h e  
response t o  Spacecraft  maneuvers t o  be an t i c ipa t ed .  

.' NASA-Langley, 1972 - 12 A-4224 
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